×

zbMATH — the first resource for mathematics

Contributions to the theory of surfaces in a 4-space of constant curvature. (English) Zbl 0060.38605

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Bôcher, Introduction to higher algebra, New York, 1908.
[2] O. Borůvka, Sur une classe de surfaces minima plongées dans un espace à quatre dimensions à courboure constante, Bulletin international Česká akademie véd a umĕní v Praze vol. 29 (1928) pp. 256-277. · JFM 54.0795.02
[3] R. Calapso, Sulle reti di Voss di uno spazio lineare quadri dimensionale, Rendiconti Seminario matematico Roma (4) vol. 2 (1938) pp. 276-311. · JFM 64.0722.03
[4] -, Sulle deformazione delle reti di Voss di un \( {S_4}\) euclideo, Atti Accademia nazionale dei Lincei (4) vol. 28 (1939) pp. 231-236.
[5] Nathaniel Coburn, Surfaces in four-space of constant curvature, Duke Math. J. 5 (1939), no. 1, 30 – 38. · Zbl 0020.39603 · doi:10.1215/S0012-7094-39-00504-1 · doi.org
[6] Luther Pfahler Eisenhart, Minimal Surfaces in Euclidean Four-Space, Amer. J. Math. 34 (1912), no. 3, 215 – 236. · JFM 43.0732.01 · doi:10.2307/2370220 · doi.org
[7] -, Differential geometry, New York, 1909.
[8] -, Riemannian geometry, Princeton, 1926. · JFM 52.0721.01
[9] W. C. Graustein, Invariant methods in classical differential geometry, Bull. Amer. Math. Soc. 36 (1930), no. 8, 489 – 521. · JFM 56.0592.03
[10] J. Knoblauch, Grundlagen der Differentialgeometrie, Leipzig, 1913. · JFM 44.0683.13
[11] Karl Kommerell, Riemannsche Flächen im ebenen Raum von vier Dimensionen, Math. Ann. 60 (1905), no. 4, 548 – 596 (German). · doi:10.1007/BF01561096 · doi.org
[12] S. Kwietniewski, Über Flächen des vierdimensionalen Raumes, deren sämtliche Tangentialebenen untereinander gleichwinklig sind, und ihre Beziehung zu den ebenen Kurven, Dissertation, Zürich. · JFM 37.0664.01
[13] C. L. E. Moore, and E. B. Wilson, Differential geometry of two-dimensional surfaces in hyperspace, Proceedings of the American Academy of Arts and Sciences vol. 52 (1916) pp. 267-368. · JFM 46.1133.02
[14] G. Ricci, Lezioni sulla teoria della superficie, Verona and Padova, Druker, 1898. · JFM 29.0514.04
[15] J. A. Schouten, and D. J. Struik, Einführung in die neueren Methoden der Differential-geometrie II, Batavia, 1938. · Zbl 0019.18301
[16] C. Tompkins, Isometric embedding of flat manifolds in Euclidean space, Duke Math. J. 5 (1939), no. 1, 58 – 61. · Zbl 0020.39701 · doi:10.1215/S0012-7094-39-00507-7 · doi.org
[17] C. Zitto, Reti di Voss a curvatura nulla di un \( {S_4}\) euclideo, Atti Acad. Pelororitana vol. 41 (1939) pp. 44-47. · JFM 65.1408.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.