Wallace, A. D. A fixed-point theorem. (English) Zbl 0060.40104 Bull. Am. Math. Soc. 51, 413-416 (1945). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 22 Documents Keywords:topology × Cite Format Result Cite Review PDF Full Text: DOI References: [1] W. L. Ayres, Some generalizations of the Scherrer fixed point theorems, Fund. Math. vol. 16 (1930) p. 333. · JFM 56.1132.01 [2] J. L. Kelley, Fixed sets under homeomorphisms, Duke Math. J. 5 (1939), 535 – 537. · Zbl 0061.40109 [3] C. Kuratowski, Une méthode d’élimination des nombres transfinis des raisonnements mathématiques, Fund. Math. vol. 3 (1922) pp. 76-108. · JFM 48.0205.04 [4] G. E. Schweigert, Fixed elements and periodic types for homeomorphisms on s.l.c. continua, Amer. J. Math. 66 (1944), 229 – 244. · Zbl 0063.08330 · doi:10.2307/2371984 [5] A. D. Wallace, Monotone transformations, Duke Math. J. 9 (1942), 487 – 506. · Zbl 0060.40103 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.