Generalizations of two theorems of Janiszewski. I, II. (English) Zbl 0060.40402

Bull. Am. Math. Soc. 51, 954-960 (1945); ibid. 52, 478-480 (1946).


Full Text: DOI


[1] S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. vol. 26 (1936) pp. 61-112. · Zbl 0013.42002
[2] Z. Janiszewski, Sur les coupures du plan faites par les continus (in Polish), Prace matematyczno-fizyczne vol. 26 (1913) pp. 11-63.
[3] F. Burton Jones, Certain consequences of the Jordan curve theorem, Amer. J. Math. 63 (1941), 531 – 544. · doi:10.2307/2371366
[4] B. Knaster and C. Kuratowski, Sur les continus non-bornés, Fund. Math. vol. 5 (1924) pp. 23-58.
[5] B. Knaster and C. Kuratowski, Sur les ensembles connexes, Fund. Math. vol. 2 (1921) pp. 206-255.
[6] C. Kuratowski and S. Straszewicz, Généralisation d’un théorème de Janiszewski, Fund. Math. vol. 12 (1928) pp. 152-157.
[7] C. Kuratowski, Sur la séparation d’ensembles situés sur le plan, Fund. Math. vol. 12 (1928) pp. 214-239.
[8] R. L. Moore, Foundations of point set theory, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. · Zbl 0192.28901
[9] Anna M. Mullikin, Certain theorems relating to plane connected point sets, Trans. Amer. Math. Soc. 24 (1922), no. 2, 144 – 162.
[10] S. Nikodym, Sur les coupures du plan faites par les ensembles connexes et les continus, Fund. Math. vol. 7 (1925) pp. 15-23.
[11] S. Straszewicz, Über die Zerschneidung der Ebene durch abgeschlossene Mengen, Fund. Math. vol. 7 (1925) pp. 159-187.
[12] S. Straszewicz, Über eine Verallgemeinerung des Jordan’schen Kurvensatzes, Fund. Math. vol. 4 (1923) pp. 128-135.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.