×

Statistical decisions under nonparametric a priori information. (English) Zbl 0798.65137

Summary: A program is developed for similar and experimental data handling. The main purposes are: the choice of the model most precisely describing the experiment, classification of particles and interaction processes. Procedures used: Bayes error calculation, \(K\) nearest neighbour density estimation, “Leave-one-out-at-a-time” test. Used nonparametric methods provide quantitative comparison of multivariate distributions and distribution mixture classification. Applications: high energy physics, cosmic ray physics.

MSC:

65C99 Probabilistic methods, stochastic differential equations
62-04 Software, source code, etc. for problems pertaining to statistics
62G07 Density estimation

Software:

KNN
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lederman, E., ()
[2] Hajek, P.; Havranek, T., Mechanizing hypothesis formation, (1979), Springer Heidelberg · Zbl 0371.02002
[3] Box, G.E.P., Technometrics, 26, 1, (1984)
[4] Eadie, E.A.; Drijard, D.; James, F.E.; Roos, M.; Sadoulet, B., Statistical methods in experimental physics, (1971), North-Holland Amsterdam · Zbl 0246.62004
[5] Chilingarian, A.A., ()
[6] Zacks, S., The theory of statistical inference, (1977), John Wiley & Sons New York · Zbl 0368.62052
[7] Berkson, J., Ann. stat., 8, 457, (1980)
[8] Efron, B., Ann. of stat., 10, 340, (1982)
[9] Brun, R.; Bruyant, F.; Maire, M.; McFerson, A.C.; Zanarini, P., GEANT3, CERN preprint, DD/EE/84-1, (1986)
[10] Dynaevsky, A.M., ()
[11] Friedman, J.N., Data analysis techniques for high-energy physics, CERN yellow report, (1974)
[12] Chilingarian, A.A., VANT, ser. tecn. phys. exp., (1981), Kharkov
[13] Diggle, P.J.; Gratton, R.J., J. roy. statist. soc. B, 46, 193, (1984)
[14] Lindley, D.V., Bayesian statistics, (1978), Soc. for Indust. and Appl. math Philadelphia · Zbl 0432.62003
[15] Yablon, M.; Chu, J.T., IEEE trans. on pattern analysis and machine intelligence, PAMI-2, 97, (1980)
[16] Fukunage, K.; Short, R.D., IEEE trans. on information, IT-26, 59, (1980)
[17] Toussaint, G.T., IEEE trans. on information, IT-20, 472, (1974)
[18] Snappin, S.M.; Knoke, J.D., Technometrics, 26, 371, (1984)
[19] James, F., Determining the statistical significance of experimental results, CERN preprint DD/81-02, (1981)
[20] Efron, B., Canadian J. statist., 9, 139, (1981)
[21] Devroye, L.; Gyorfi, L., Nonparametric density estimation, the L1 view, (1985), Wiley New York
[22] Rosenblatt, M., Ann. math. stat., 27, 832, (1956)
[23] Parzen, E., Ann. math. stat., 33, 1065, (1962)
[24] Fix, E.; Hodges, J.L., Project 21-49-004, ()
[25] Lofsgaarden, D.O.; Quesenberry, C.D., Ann. math. stat., 36, 1049, (1965)
[26] Mahalonobis, P.C., (), 49
[27] Tapia, R.A.; Thompson, J.R., Nonparametric probability density estimation, (1978), The John Hopkins University Press Baltimore and London · Zbl 0449.62029
[28] Fukunaga, K.; Himmels, D., IEEE trans. on pattern analysis and machine intelligence, Pami9, 634, (1987)
[29] Rabiner, L.R.; Levinson, E.; Rozenberg, A.E.; Wilpon, J.G., IEEE trans. on acoustics, speech, signal processing, Assp-27, 336, (1974)
[30] Chilingarian, A.A.; Galfayan, S.Kh., Stat. problems of control, Vilnius, 66, 66, (1984)
[31] Bock, B.; Ruhw, W., Nucl. phys. A, 459, 573, (1986)
[32] Gill, P.E.; Murray, W.; Piches, S.M., ACM trans. of math. software, 5, 266, (1979)
[33] Kim, B.S.; Park, S.B., On pattern analysis and machine intelligence, Pami-8, 761, (1986)
[34] Denisova, V.G.; Dunaevsky, A.M.; Slavatinsky, S.A., (), 390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.