Turnbull, A. D.; Troyon, F. Two variational forms of the MHD ballooning equation. (English) Zbl 0804.76058 Comput. Phys. Commun. 52, No. 3, 303-316 (1989). Summary: Two alternative variational formulations of the magnetohydrodynamic (MHD) ballooning equation are presented and compared. When discretized using finite elements, the two forms are shown to differ by a term of order \((\Delta\chi)^ 2\), where \(\chi\) is the azimuthal coordinate. Convergence studies indicate that this is reflected in quadratic convergence of the stability limit boundaries and that one form is generally pessimistic and the other optimistic with respect to these limits. The optimistic form has superior convergence properties with respect to errors in the equilibrium solution and, in contrast to the pessimistic form, cannot predict unphysical instabilities when the pressure gradient vanishes. On the other hand, the pessimistic form has a slightly better convergence rate in \(\Delta\chi\). The two forms together provide a much more reliable check for ballooning stability than either one alone. MSC: 76M10 Finite element methods applied to problems in fluid mechanics 76W05 Magnetohydrodynamics and electrohydrodynamics Keywords:azimuthal coordinate; quadratic convergence; ballooning stability Software:ERATO PDF BibTeX XML Cite \textit{A. D. Turnbull} and \textit{F. Troyon}, Comput. Phys. Commun. 52, No. 3, 303--316 (1989; Zbl 0804.76058) Full Text: DOI References: [1] Troyon, F.; Gruber, R.; Saurenmann, H.; Semenzato, S.; Succi, S., Plasma phys. and contr. fusion, 26, 209, (1984) [2] Wesson, J.A.; Sykes, A., Nucl. fusion, 25, 8, (1984) [3] Yamazaki, K.; Amano, T.; Naitou, H.; Hamada, Y.; Azumi, M., Nucl. fusion, 25, 1543, (1985) [4] Gruber, R.; Semenzato, S.; Troyon, F.; Tsunematsu, T.; Kerner, W.; Merkel, P.; Schneider, W., Comput. phys. commun., 24, 363, (1981) [5] Grimm, R.C.; Dewar, R.L.; Manickam, J., J. comput. phys., 49, 94, (1983) [6] Gruber, R.; Troyon, F.; Berger, D.; Bernard, L.C.; Rousset, S.; Schreiber, R.; Kerner, W.; Schneider, W.; Roberts, K.V., Comput. phys. commun., 21, 323, (1981) [7] Dobrott, D.; Nelson, D.B.; Greene, J.M.; Glasser, A.H.; Chance, M.S.; Frieman, E.A., Phys. rev. lett., 39, 943, (1977) [8] Connor, J.W.; Hastie, R.J.; Taylor, J.B., Phys. rev. lett., 40, 396, (1978) [9] Grimm, R.C.; Greene, J.M.; Johnson, J.L., (), 253 [10] Greene, J.M.; Chance, M.S., Nucl. fusion, 21, 453, (1981) [11] Gruber, R.; Rappaz, J., Finite element methods in linear ideal magnetohydrodynamics, (), 142 [12] Mercier, C., Nucl. fusion, 1, 47, (1960) [13] Newcomb, W.A., Ann. phys., 10, 232, (1960) [14] Pao, Y.P., Nucl. fusion, 14, 25, (1974) [15] Lancaster, P., Theory of matrices, (), 89 [16] Solovév, L.S., Zh. eksp. teor. fiz., Jetp, 26, 400, (1968) [17] Berger, D.; Bernard, L.C.; Gruber, R.; Troyon, F., J. appl. math. phys. (ZAMP), 31, 113, (1980) [18] Chance, M.S.; Greene, J.M.; Grimm, R.C.; Johnson, J.L.; Manickam, J.; Kerner, W.; Berger, D.; Bernard, L.C.; Gruber, R.; Troyon, F., J. comput. phys., 28, 1, (1978) [19] Turnbull, A.D.; Secrétan, M.A.; Troyon, F.; Semenzato, S.; Gruber, R., J. comput. phys., 66, 391, (1986) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.