×

zbMATH — the first resource for mathematics

Singular perturbation of eigenvalue problems for linear differential equations of even order. (English) Zbl 0064.33301

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Poincaré, Acta Math. 8 pp 295– (1886)
[2] Schlesinger, Funktionen eines Parameters, Math. Ann. 63 pp 277– (1907) · JFM 38.0353.01 · doi:10.1007/BF01449198
[3] Birkhoff, Trans. Amer. Math. Soc. 9 pp 373– (1908)
[4] Noaillon, Mém. Soc. Roy. Sciences Liege, (3) 9 pp 197– (1912)
[5] Über die Abhängigkeit der Integrale eines Systems linearer Differentialgleichugen Von einem Parameter, Sitzungsberichte der Heidelberger Akad. der Wiss., Math.Nat. KI. I. Abh. (A.13) 1918, II. Abh. (A.15) 1918, III. Abh. (A.6) 1919.
[6] Birkhoff, Proc. Amer. Acad. Arts and Sci. 58 pp 51– (1923) · doi:10.2307/20025975
[7] Tamarkin, Math. Zeitschrift 27 pp 1– (1927)
[8] Tamarkin, Math. Zeitschrift 21 pp 119– (1924)
[9] Trjitzinsky, Acta Math. 67 pp 1– (1936)
[10] Turritin, Amer. Journ. Math. 56 pp 364– (1936)
[11] The Theory of Sound, Vol. I, London, 1937.
[12] Rellich, Math. Ann.: I. Mitt. 113 pp 600– (1937) · Zbl 0016.06201 · doi:10.1007/BF01571652
[13] Math. Ann.: II. Mitt. 113 pp 677– (1937) · Zbl 0016.06301 · doi:10.1007/BF01571658
[14] Math. Ann.: III. Mitt. 116 pp 555– (1939)
[15] Math. Ann.: IV. Mitt. 117 pp 356– (1940)
[16] Math. Ann.: V. Mitt. 118 pp 462– (1942)
[17] Wasow, Journ. of Math. and Phys. 23 pp 173– (1944) · Zbl 0061.18202 · doi:10.1002/sapm1944231173
[18] Wasow, Ann. of Math. 49 pp 852– (1948)
[19] Turritin, Ann. of Math. Studies, No. 29 pp 81– (1952)
[20] Introduction to the asymptotic theory of ordinary linear differential equations, Lecture Notes, National Bureau of Standards, Los Angeles, California, Summer Session, 1953.
[21] Zur Theorie der hermiteschen Operatoren des Hilbertschen Raumes, Gött. Nach., Math.-Phys. K1. IIa, 1951.
[22] Morawetz, Journ. Rat. Mech. and Anal. 1 pp 579– (1952)
[23] Kato, Math. Ann. 125 pp 435– (1953)
[24] Linear equations with variable coefficients and small parameters in the highest derivatives, Am. Math. Soc. Translations, No. 82, 1953.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.