×

zbMATH — the first resource for mathematics

The structure of topological semigroups. (English) Zbl 0065.00802

Keywords:
group theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. H. Clifford, A system arising from a weakened set of group postulates, Ann. of Math. (2) 34 (1933), no. 4, 865 – 871. · Zbl 0008.05002
[2] A. H. Clifford, Semigroups admitting relative inverses, Ann. of Math. (2) 42 (1941), 1037 – 1049. · Zbl 0063.00920
[3] A. H. Clifford, Semigroups containing minimal ideals, Amer. J. Math. 70 (1948), 521 – 526. · Zbl 0038.01103
[4] A. H. Clifford, Semigroups without nilpotent ideals, Amer. J. Math. 71 (1949), 834 – 844. · Zbl 0045.30101
[5] A. H. Clifford and D. D. Miller, Semigroups having zeroid elements, Amer. J. Math. 70 (1948), 117 – 125. · Zbl 0035.29401
[6] Haskell Cohen, A cohomological definition of dimension for locally compact Hausdorff spaces, Duke Math. J. 21 (1954), 209 – 224. · Zbl 0058.16605
[7] Robert Ellis, Continuity and homeomorphism groups, Proc. Amer. Math. Soc. 4 (1953), 969 – 973. · Zbl 0052.39602
[8] W. M. Faucett, Topological semigroups and continua, Tulane University Dissertation, 1954. · Zbl 0065.25301
[9] L. Fuchs, On semigroups admitting relative inverses and having minimal ideals, Publ. Math. Debrecen 1 (1950), 227 – 231. · Zbl 0041.35802
[10] B. Gelbaum, G. K. Kalisch, and J. M. H. Olmsted, On the embedding of topological semigroups and integral domains, Proc. Amer. Math. Soc. 2 (1951), 807 – 821. · Zbl 0045.00801
[11] A. D. Wallace, Struct ideals, Proc. Amer. Math. Soc. 6 (1955), 634 – 638. · Zbl 0065.37802
[12] J. A. Green, On the structure of semigroups, Ann. of Math. (2) 54 (1951), 163 – 172. · Zbl 0043.25601
[13] Einar Hille, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, New York, 1948. · Zbl 0033.06501
[14] John W. Keesee, On the homotopy axiom, Ann. of Math. (2) 54 (1951), 247 – 249. · Zbl 0044.19901
[15] R. J. Koch, On topological semigroups, Tulane University Dissertation, 1953.
[16] R. J. Koch, Remarks on primitive idempotents in compact semigroups with zero, Proc. Amer. Math. Soc. 5 (1954), 828 – 833. · Zbl 0056.02704
[17] R. J. Koch and A. D. Wallace, Maximal ideals in compact semigroups, Duke Math. J. 21 (1954), 681 – 685. · Zbl 0057.01502
[18] Henry B. Mann, On certain systems which are almost groups, Bull. Amer. Math. Soc. 50 (1944), 879 – 881. · Zbl 0063.03769
[19] Deane Montgomery, Continuity in topological groups, Bull. Amer. Math. Soc. vol. 42 (1936) pp. 879-882. · Zbl 0015.39403
[20] Mikao Moriya, Zur Theorie der halb-topologischen Gruppen und Körper, Math. J. Okayama Univ. 1 (1952), 109 – 124 (German). · Zbl 0047.26003
[21] Katumi Numakura, On bicompact semigroups with zero, Bull. Yamagata Univ. (Nat. Sci.) 1951 (1951), no. 4, 405 – 412.
[22] Katsumi Numakura, On bicompact semigroups, Math. J. Okayama Univ. 1 (1952), 99 – 108. · Zbl 0047.25502
[23] J. E. L. Peck, An ergodic theorem for a noncommutative semigroup of linear operators, Proc. Amer. Math. Soc. 2 (1951), 414 – 421. · Zbl 0043.33301
[24] D. Rees, On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), 387 – 400. · JFM 66.1207.01
[25] Hans Samelson, Topology of Lie groups, Bull. Amer. Math. Soc. 58 (1952), 2 – 37. · Zbl 0047.16701
[26] Edwin H. Spanier, Cohomology theory for general spaces, Ann. of Math. (2) 49 (1948), 407 – 427. · Zbl 0035.24801
[27] Anton Suschkewitsch, Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit, Math. Ann. 99 (1928), no. 1, 30 – 50 (German). · JFM 54.0151.04
[28] A. D. Wallace, Outline for algebraic topology, Tulane University, 1949 and 1952.
[29] A. D. Wallace, A theorem on endpoints, Anais Acad. Brasil. Ci. 22 (1950), 29 – 33.
[30] A. D. Wallace, The map excision theorem, Duke Math. J. 19 (1952), 177 – 182. · Zbl 0046.40601
[31] A. D. Wallace, A note on mobs, Anais Acad. Brasil. Ci. 24 (1952), 329 – 334. · Zbl 0049.01503
[32] A. D. Wallace, A note on mobs. II, Anais Acad. Brasil. Ci. 25 (1953), 335 – 336. · Zbl 0052.25801
[33] A. D. Wallace, Indecomposable semi-groups, Math. J. Okayama Univ. vol. 3 (1953) pp. 1-3. · Zbl 0052.02601
[34] A. D. Wallace, Inverses in Euclidean mobs, Math. J. Okayama Univ. 3 (1953), 23 – 28. · Zbl 0052.02504
[35] A. D. Wallace, Cohomology, dimension and mobs, Summa Brasil. Math. 3 (1953), 43 – 55. · Zbl 0053.43305
[36] J. G. Wendel, Haar measure and the semigroup of measures on a compact group, Proc. Amer. Math. Soc. 5 (1954), 923 – 929. · Zbl 0056.26001
[37] Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. · Zbl 0061.39301
[38] W. M. Faucett, Compact semigroups irreducibly connected between two idempotents, Proc. Amer. Math. Soc. 6 (1955), 741 – 747. · Zbl 0065.25204
[39] W. M. Faucett, Topological semigroups and continua with cutpoints, ibid. (in press). · Zbl 0065.25301
[40] W. M. Faucett and R. J. Koch, Complements of maximal ideals in semigroups (to appear). · Zbl 0065.25303
[41] E. J. McShane, Images of sets satisfying the conditions of Baire, Ann. of Math. (2) 51 (1950), 380 – 386. · Zbl 0036.16701
[42] B. J. Pettis, On continuity and openness of homomorphisms in topological groups, Ann. of Math. (2) 52 (1950), 293 – 308. · Zbl 0037.30501
[43] B. J. Pettis, Uniform Cauchy points and points of equi-continuity, Amer. J. Math. 73 (1951), 602 – 614. · Zbl 0042.41201
[44] B. J. Pettis, Remarks on a theorem of E. J. McShane, Proc. Amer. Math. Soc. 2 (1951), 166 – 171. · Zbl 0043.05502
[45] A. D. Wallace, The position of C-sets in semigroups, ibid. (in press). · Zbl 0068.02403
[46] T. Rado and P. V. Reichelderfer, Continuous transformations in analysis, Springer (in press). · Zbl 0067.03506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.