×

zbMATH — the first resource for mathematics

Difference sets in a finite group. (English) Zbl 0065.13302

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Canadian J. Math. 1 (1949), 88 – 93. · Zbl 0037.37502
[2] T. A. Evans and H. B. Mann, On simple difference sets, Sankhyā 11 (1951), 357 – 364. · Zbl 0045.01706
[3] S. Chowla, A property of biquadratic residues, Proc. Nat. Acad. Sci. India. Sect. A. 14 (1944), 45 – 46. · Zbl 0063.00871
[4] S. Chowla, On difference sets, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 92 – 94. · Zbl 0032.26602
[5] S. Chowla and H. J. Ryser, Combinatorial problems, Canadian J. Math. 2 (1950), 93 – 99. · Zbl 0037.00603
[6] Marshall Hall Jr., Cyclic projective planes, Duke Math. J. 14 (1947), 1079 – 1090. · Zbl 0029.22502
[7] Marshall Hall and H. J. Ryser, Cyclic incidence matrices, Canadian J. Math. 3 (1951), 495 – 502. · Zbl 0044.00501
[8] Henry B. Mann, Some theorems on difference sets, Canadian J. Math. 4 (1952), 222 – 226. · Zbl 0046.04301
[9] Emma Lehmer, On residue difference sets, Canadian J. Math. 5 (1953), 425 – 432. · Zbl 0052.03904
[10] T. G. Ostrom, Concerning difference sets, Canadian J. Math. 5 (1953), 421 – 424. · Zbl 0052.03903
[11] H. J. Ryser, A note on a combinatorial problem, Proc. Amer. Math. Soc. 1 (1950), 422 – 424. · Zbl 0038.15302
[12] H. J. Ryser, Matrices with integer elements in combinatorial investigations, Amer. J. Math. 74 (1952), 769 – 773. · Zbl 0048.00707
[13] S. S. Shrikhande, The impossibility of certain symmetrical balanced incomplete block designs, Ann. Math. Statistics 21 (1950), 106 – 111. · Zbl 0040.36203
[14] James Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), no. 3, 377 – 385. · Zbl 0019.00502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.