×

zbMATH — the first resource for mathematics

Mapping degree in Banach spaces and spectral theory. (English) Zbl 0065.35503

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Dunford, N.: Spectral theory. I. Convergence to projections. Trans. Amer. Math. Soc.54, 185-217 (1943). · Zbl 0063.01185
[2] Graves L. M.: Riemann integration and Taylor’s theorem in general analysis. Trans. Amer. Math. Soc.29, 163-177 (1927). · JFM 53.0234.03
[3] Graves L. M., andT. H. Hildebrandt: Implicit functions and their differentials in general analysis. Trans. Amer. Math. Soc.29, 126-153 (1927). · JFM 53.0234.02
[4] Hille, E.: Functional analysis and semi-groups. Amer. Math. Soc., Colloquium Publications21 (1948). · Zbl 0033.06501
[5] Leray, J.: La theorie des points fixes et ses applications en analyse. Proc. Internat. Congress of Mathematicians, Cambridge, Mass. U.S.A., 1950. Publ. Amer. Math. Soc.2, 202-207 (1952).
[6] Leray, J., etJ. Schauder: Topology and équations fonctionnelles. Ann. sci. École norm. sup. (3)51, 45-78 (1934). · Zbl 0009.07301
[7] Mackey, G. W.: Isomorphisms of normed linear spaces. Ann. Math.43, 244-260 (1942). · Zbl 0061.24210
[8] Nagumo, M.: A theory of the degree of mapping based on infinitesimal analysis. Amer. J. Math.73, 485-496 (1951). · Zbl 0043.17802
[9] Nagumo, M.: Degree of mapping in convex linear topological spaces. Amer. J. Math.73, 485-496 (1951). · Zbl 0043.17802
[10] Schwartz, J.: Perturbations of spectral operators and applications. I. Bounded perturbations. Pacific J. Math.4, 415-458 (1954). · Zbl 0056.34901
[11] Stone, M. H.: Linear transformations in Hilbert space and their applications to analysis. Amer. Math. Soc., Colloquium Publications15 (1932). · Zbl 0005.40003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.