Friedrichs, K. O. Differential forms on Riemannian manifolds. (English) Zbl 0066.07504 Commun. Pure Appl. Math. 8, 551-590 (1955). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 94 Documents Keywords:partial differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] The Theory and Applications of Harmonic Integrals, Cambridge University Press, 1941. [2] Weyl, Duke Math. J. 7 pp 411– (1940) [3] de Rham, Ann. Univ. Grenoble 22 pp 135– (1946) [4] Bidal, Comment. Math. Helv. 19 pp 149– (1946) [5] Kodaira, Ann. of Math. 50 pp 587– (1949) [6] Milgram, Proc. Nat. Acad. Sci. U. S.A. 37 pp 180– (1951) [7] Proc. Nat. Acad. Sci. U. S.A. 37 pp 435– (1951) [8] Gaffney, Dissertation, University of Chicago, March 1951, and Proc. Nat. Acad. Sci. U. S.A. 37 pp 48– (1951) [9] Duff, Canadian J. Math. 5 pp 57– (1952) · Zbl 0052.32801 · doi:10.4153/CJM-1953-008-8 [10] Ann. of Math. 56 pp 115– (1952) [11] Duff, Ann. of Math. 56 pp 128– (1952) [12] Hausner, Ann. of Math. 57 pp 475– (1953) [13] Duff, Canadian J. Math. 6 (1954) [14] Conner, The Green’s and Neumann’s problems for differential forms on Riemannian manifolds · Zbl 0057.07403 [15] Morrey, Ann. of Math. [16] A variational method in the theory of harmonic integrals II, Air Force Report, Institute for Advanced Study. [17] Ein Satz über mittlere Konvergenz, Göttingen Ges. Wiss. Nachr. Math.-Phys. KI., No. 4, 1930, pp. 30–35. [18] and , Methoden der mathematischen Physik, Vol. II, Chap. 7, Springer, Berlin, 1937. · Zbl 0017.39702 · doi:10.1007/978-3-642-47434-7 [19] Friedrichs · Zbl 0084.03701 [20] Trans. Amer. Math. Soc. 55 pp 132– (1944) [21] Duke Math. J. 14 pp 67– (1947) [22] Ann. of Math. 48 pp 441– (1947) [23] Comm. Pure Appl. Math. 6 pp 299– (1953) [24] Aronsaajn, Abstract 67b, Bull. Amer. Math. Soc. 60 pp 533– (1954) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.