Measurable subspaces and subalgebras. (English) Zbl 0066.11003

Full Text: DOI


[1] Shu-Teh Chen Moy, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math. 4 (1954), 47 – 63. · Zbl 0055.12503
[2] Paul R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1957) edition. · Zbl 0962.46013
[3] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications, vol. 23, 1939, pp. 10-11.
[4] J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. · Zbl 0053.26802
[5] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. · Zbl 0040.16802
[6] Garrett Birkhoff, Moyennes des fonctions bornées, Algèbre et Théorie des Nombres., Colloques Internationaux du Centre National de la Recherche Scientifique, no. 24, Centre National de la Recherche Scientifique, Paris, 1950, pp. 143 – 153 (French). · Zbl 0045.38103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.