×

zbMATH — the first resource for mathematics

Simulation of MHD processes in high-temperature plasma. (English. Russian original) Zbl 0825.76512
Comput. Math. Model. 1, No. 2, 234-244 (1990); translation from Methods for mathematical modelling, the automatization of the treatment of observations and their applications, Work Collect., Moskva 1986, 243-259 (1986).
MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76W05 Magnetohydrodynamics and electrohydrodynamics
Software:
ERATO
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yu. N. Dnestrovskii and D. P. Kostomarov, ”Simulation of MHD processes,” in:Mathematical Modeling of Plasma [in Russian], Nauka, Moscow (1982), pp. 127-218.
[2] L. E. Zakharov and V. D. Shafranov, ”Equilibrium of a current-carrying plasma in toroidal systems,” in: M. A. Leontovich and B. B. Kadomtsev (eds.),Topics in Plasma Theory [in Russian], No. 11, Énergoizdat, Moscow (1982), pp. 118-235.
[3] Yu. N. Dnestrovskii, D. P. Kostomarov, and A. M. Popov, ”Numerical calculation of equilibria in tokamak systems,”Zh. Tekh. Fiz. 42, No. 11, 2255-2260 (1972).
[4] J. Blum, G. Cissoko, and Dei Cas, ”Development of MAKOKOT code,” in:Plasma Physics and Controlled Nuclear Fusion Research, Vol. 1, IAEA, Vienna (1979), pp. 521-534.
[5] E. N. Bondarchuk, N. I. Doinikov, and B. S. Mingalev, ”Numerical modeling of equilibrium of tokamak plasma in the presence of a ferromagnet,”Zh. Tekh. Fiz. 47, 521-526 (1977).
[6] Yu. N. Dnestrovskii, D. P. Kostomarov, A. M. Popov, and S. V. Tsaun, ”Computation of plasma equilibrium in tokamak with iron core,” Proc. 10th Europ. Conf. on Controlled Fusion and Plasma Physics, Vol. 1, Moscow (1981), p. B-14.
[7] J. Blum, J. Le Fall, and B. Thooris, ”The self-consistent equilibrium and diffusion code SCED,”Comput. Phys. Commun. 24, 235-254 (1981). · doi:10.1016/0010-4655(81)90149-1
[8] Yu. N. Dnestrovskii, D. P. Kostomarov, and A. M. Popov, ”Screw instability of a plasma with distributed current,”Zh. Tekh. Fiz. 42, No. 9, 1825-1838 (1972).
[9] A. M. Popov and E. A. Shagirov, ”MHD models for the study of stability of internal modes in tokamak,” in: D. P. Kostomarov (ed.),Mathematical Modeling of Kinetic and MHD Processes in Plasma [in Russian], No. 8, Moscow State Univ. (1979), pp. 55-78.
[10] B. B. Kadomtsev and O. P. Pogutse, ”Nonlinear helical perturbations of tokamak plasma,”Zh. Éksp. Teor. Fiz. 65, No. 2, 575-589 (1973).
[11] Yu. N. Dnestrovskii, D. P. Kostomarov, A. M. Popov, and E. A. Shagirov, ”Nonlinear evolution of helical modes in a low-q tokamak,” in: Europ. Conf. on Controlled Fusion and Plasma Physics, Aachen, West Germany [in Russian], Vol. 1 (1983), p. 52.
[12] Yu. N. Dnestrovskii, D. P. Kostomarov, A. M. Popov, and D. Yu. Sychugov, ”Stabilization of vertical instability in a tokamak with a diverter,”Fiz. Plazmy 10, No. 4, 519-521 (1984).
[13] J. Killen (ed.),Methods in Computational Physics, Academic Press, New York (1976).
[14] R. Gruber, F. Troyon, D. Berger, et al., ”ERATO stability code,”Comput. Phys. Commun. 21, 323-371 (1981). · doi:10.1016/0010-4655(81)90013-8
[15] A. F. Danilov, Yu. N. Dnestrovskij, D. P. Kostomarov, and A. M. Popov, ”Three-dimensional code for studying MHD motion of tokamak plasma,” in: Proc. 8th Europ. Conf. on Controlled Fusion and Plasma Physics, Vol. 1, Prague (1977), p. 48.
[16] A. Sykes, ”Developments of the Culham 3D nonlinear MHD-code,”Comput. Phys. Commun. 24, 437-439 (1981). · doi:10.1016/0010-4655(81)90168-5
[17] S. C. Jardin and J. L. Johnson, in: Proc. 8th Conf. on Numerical Simulation of Plasmas, paper DB-2, GA, LLNL Report CONF-780614 (1978).
[18] V. M. Goloviznin, A. A. Samarskii, and A. P. Favorskii, ”Using the principle of least action to construct discrete mathematical models in magnetohydrodynamics,”Dokl. Akad. Nauk SSSR 246, No. 5, 1083-1086 (1979).
[19] C. H. Finnan III and J. Killen, ”Solution of the time-dependent three-dimensional resistive MHD equations,”Comput. Phys. Commun. 24, 441-463 (1981). · doi:10.1016/0010-4655(81)90169-7
[20] I. Kawakami, ”Finite element method for 3D MHD simulations,” in: Proc. US-Japan Theory Workshop on 3D MHD Studies for Toroidal Devices (1981), pp. 207-216.
[21] A. F. Danilov, Yu. N. Dnestrovskii, D. P. Kostomarov, and A. M. Popov, ”Nonlinear helical waves in plasma allowing for finite conductivity,”Fiz. Plazmy 2, No. 1, 167-170 (1976).
[22] M. N. Rosenbluth et al., ”Numerical studies of nonlinear evolution of kink modes in tokamaks,”Phys. Fluids 19, No. 12, 1987-1996 (1976). · doi:10.1063/1.861430
[23] V. E. Lynch, B. A. Carreras, H. R. Hicks, et al., ”Resistive MHD studies of high-? tokamak plasmas,”Comput. Phys. Commun. 24, 465-476 (1981). · doi:10.1016/0010-4655(81)90170-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.