×

The Bernstein approximation problem. (English) Zbl 0068.04801


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] N. I. Ahiezer and K. I. Babenko, On weighted polynomials of approximation to functions continuous on the whole real axis, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 315 – 318 (Russian).
[2] N. I. Ahiezer and S. N. Bernšteĭn, Generalization of a theorem on weight functions and application to the problem of moments, Doklady Akad. Nauk SSSR (N.S.) 92 (1953), 1109 – 1112 (Russian). · Zbl 0051.30003
[3] S. N. Bernšteĭn, A condition necessary and sufficient for an even nondecreasing function to be a weight function, Doklady Akad. Nauk SSSR (N.S.) 88 (1953), 589 – 592; correction, 90, 124 (1953) (Russian).
[4] Einar Hille and J. D. Tamarkin, On a theorem of Paley and Wiener, Ann. of Math. (2) 34 (1933), no. 3, 606 – 614. · Zbl 0007.15703
[5] Harry Pollard, Solution of Bernstein’s approximation problem, Proc. Amer. Math. Soc. 4 (1953), 869 – 875. · Zbl 0057.29802
[6] E. C. Titchmarsh, Theory of functions, Oxford, 1932. · Zbl 0005.21004
[7] -, Theory of Fourier integrals, Oxford, 1937.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.