×

zbMATH — the first resource for mathematics

Asymptotic phenomena in mathematical physics. (English) Zbl 0068.16406

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. G. Stokes and G. G. Stokes, On the discontinuity of arbitrary constants that appear as multipliers of semi-convergent series, Acta Math. 26 (1902), no. 1, 393 – 397. A letter to the editor. · JFM 33.0261.01 · doi:10.1007/BF02415503 · doi.org
[2] H. L. Turrittin, Asymptotic expansions of solutions of systems of ordinary linear differential equations containing a parameter, Contributions to the Theory of Nonlinear Osciallations, vol. II, Princeton University Press, Princeton, 1952, pp. 81 – 116. · Zbl 0047.08602
[3] Wolfgang Wasow, Singular perturbations of boundary value problems for nonlinear differential equations of the second order, Comm. Pure Appl. Math. 9 (1956), 93 – 113. · Zbl 0074.30502 · doi:10.1002/cpa.3160090107 · doi.org
[4] Wolfgang Wasow, On the convergence of an approximation method of M. J. Lighthill, J. Rational Mech. Anal. 4 (1955), 751 – 767.
[5] Norman Levinson, Perturbations of discontinuous solutions of non-linear systems of differential equations, Acta Math. 82 (1950), 71 – 106. · Zbl 0039.31404 · doi:10.1007/BF02398275 · doi.org
[6] A. B. Vasil\(^{\prime}\)eva, On differential equations containing small parameters, Mat. Sbornik N.S. 31(73) (1952), 587 – 644 (Russian).
[7] J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, Inc., New York, N.Y., 1950. · Zbl 0035.39603
[8] Richard Bellman, Stability theory of differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. · Zbl 0053.24705
[9] V. V. Nemyckiń≠, Some problems of the qualitative theory of differential equations, Uspehi Matem. Nauk (N.S.) 9 (1954), no. 3(61), 39 – 56 (Russian).
[10] Norman Levinson, The first boundary value problem for \?\Delta \?+\?(\?,\?)\?\?+\?(\?,\?)\?_\?+\?(\?,\?)\?=\?(\?,\?) for small \?, Ann. of Math. (2) 51 (1950), 428 – 445. · Zbl 0036.06801 · doi:10.2307/1969333 · doi.org
[11] P. A. Lagerstrom and J. D. Cole, Examples illustrating expansion procedures for the Navier-Stokes equations, J. Rational Mech. Anal. 4 (1955), 817 – 882. · Zbl 0066.19505
[12] F. G. Friedlander, Geometrical optics and Maxwell’s equations, Proc. Cambridge Philos. Soc. 43 (1947), 284 – 286. · Zbl 0029.18203
[13] F. G. Friedlander and Joseph B. Keller, Asymptotic expansions of solutions of (∇²+\?²)\?=0, Research Rep. No. EM-67, Division of Electromagnetic Research, Institute of Mathematical Sciences, New York University, 1954.
[14] Eric Reissner, A problem of finite bending of circular ring plates, Quart. Appl. Math. 10 (1952), 167 – 173. · Zbl 0047.42802
[15] K. O. Friedrichs and J. J. Stoker, The non-linear boundary value problem of the buckled plate, Amer. J. Math. 63 (1941), 839 – 888. · Zbl 0026.16301 · doi:10.2307/2371625 · doi.org
[16] E. Bromberg and J. J. Stoker, Non-linear theory of curved elastic sheets, Quart. Appl. Math. 3 (1945), 246 – 265. · Zbl 0063.00611
[17] Walter Tollmien, Laminare Grenzschichten, Naturforschung und Medizin in Deutschland, 1939 – 1946, Band 11. Hydro- und Aerodynamik, Verlag Chemie, Weinheim, 1953, pp. 21 – 53 (German).
[18] C. C. Lin, Hydrodynamic stability, Proceedings of Symposia in Applied Mathematics, Vol. V, Wave motion and vibration theory, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954, pp. 1 – 18.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.