zbMATH — the first resource for mathematics

Particle-in-cell simulations with moving boundaries - adaptive mesh generation. (English) Zbl 0811.65123
The particle-in-cell (PIC) method is coupled with boundary-fitted grids in order to model the stationary Maxwell-Lorentz problem in technical devices. The aim of this paper is to introduce techniques, with which one is able to change the emission surfaces in the particle-in-cell code based on boundary fitted coordinates, (BFC PIC) according to the physical quantities computed from the dynamical behaviour of electromagnetic device.
In contrast to previous work of J. U. Brackbill and J. S. Saltzman [J. Comput. Phys. 46, 342-368 (1982; Zbl 0489.76007)], J. U. Brackbill and H. M. Ruppel [J. Comput. Phys. 65, 314-343 (1986; Zbl 0592.76090)], and J. F. Thompson [Appl. Numer. Math. 1, 3-27 (1985; Zbl 0551.65081)], who focused on the problem of rezoning the grid due to the solution in a sophisticated manner, the author chooses a simple grid modification model introduced by J. F. Thompson, Z. U. A. Warsi and C. W. Mastin [J. Comput. Phys. 47, 1-108 (1982; Zbl 0492.65011)] and outlines the procedure of combining adaptive mesh zoning with the PIC method. Specifically the author does not adapt the mesh to the solution of the problem in order to obtain a better resolution of this numerical solution or to improve the grid in terms of smoothness and orthogonality, but he treats the problem how to handle physical effects, where the boundary of the computational domain changes during simulation. Thus it is the purpose of the paper to describe coupling of adaptive meshes with the PIC method and to develop techniques in order to obtain a smooth transition of the particles in these changing grids.
Examples of computation for externally applied – \(B\) ion diode are presented.

65Z05 Applications to the sciences
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
78A55 Technical applications of optics and electromagnetic theory
Full Text: DOI
[1] Hockney, R.W.; Eastwood, J.W., Computer simulation using particles, (1981), McGraw-Hill New York · Zbl 0662.76002
[2] Birdsall, C.K.; Langdon, A.B., Plasma physics via computer simulation, (1985), McGraw-Hill New York
[3] Quintenz, J.P., J. appl. phys., 49, 4377, (1978)
[4] Seidel, D.B.; Kiefer, M.L.; Coats, R.S.; Pointon, T.D.; Quintenz, J.P.; Johnson, W.A., (), 475
[5] Mankofsky, A.; Seftor, J.L.; Chang, C.L.; Ko, K.; Mondelli, A.A.; Drobot, A.T.; Moura, J.; Aimonetti, W.; Brandon, S.T.; Nielsen, D.E.; Dyer, K.M., Comput. phys. commun., 48, 155, (1988)
[6] M.E. Jones, in Proceedings, 12th Int. Conf. Numer. Simul. Plasmas, San Francisco, IM3, Sep. 20-24,1987.
[7] Westermann, T., Nucl. instrum. methods A, 263, 2711, (1988)
[8] Matsumoto, M.; Kawata, S., J. comput. phys., 87, 488, (1990)
[9] Loehner, R.; Ambrosiano, J., J. comput. phys., 91, 22, (1990)
[10] Thompson, J.F.; Warsi, Z.U.A.; Mastin, C.W., J. comput. phys., 47, 1, (1982)
[11] Westermann, T., Int. J. numer. modelling, electron. networks, devices and fields, 7, 43, (1994)
[12] Brackbill, J.U.; Saltzman, J.S., J. comput. phys., 46, 342, (1982)
[13] Brackbill, J.U.; Ruppel, H.M., J. comput. phys., 65, 314, (1986)
[14] Thompson, J.F., Appl. numer. math., 1, 3, (1985)
[15] C. Cook, M.P. Desjarlais, S.A. Slutz, T.R. Lockner, D.J. Johnson, S.E. Rosenthal, J.E. Bailey, R.S. Coats, R.J. Leeper, J.E. Maenchen, T.A. Mehlhorn, T.D. Pointon, J.P. Quintenz, C.L. Ruiz, R.W. Stinnett, W.A. Stygar, and J.P. VanDevender, in Proceedings, 7th Conf. on High-Power Particle Beams, Kernforschungszentrum Karlsruhe, 1988, edited by W. Bauer and W. Schmidt, p. 35.
[16] VanDevender, J.P.; Cook, D.L., Science, 232, 831, (1986)
[17] Bluhm, H.J.; Hoppé, P.; Laqua, H.P.; Rusch, D., IEEE trans. plasma sci., 80, 995, (1992)
[18] Halter, E., Die berechnung von elektrostatischen feldern in pulsleistungsanlagen, kfk4072, (1986), Kernforschungszentrum Karlsruhe GmbH Karlsruhe
[19] Ehrlich, L.W., (), 81
[20] Seldner, D.; Westermann, T., J. comput. phys., 79, 1, (1988)
[21] Westermann, T., J. comput. phys., 101, 307, (1992)
[22] V. Fedorov, private communication, 1992.
[23] Feher, L.; Schmidt, W.; Westermann, T., DRIFTPIC, a computer program for the calculation of ion trajectories in the drift section of externally applied-B diodes, kfk5207, (1993), Kernforschungszentrum Karlsruhe GmbH Karlsruhe
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.