×

zbMATH — the first resource for mathematics

Lineare topologische Räume, die nicht lokalkonvex sind. (German) Zbl 0070.11301

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bourbaki, N.: Topologie g?n?rale, Chap. I?II. Actual. Sci. Industr. 858-1142 (1951).
[2] Day, M. M.: The spacesL p with 0<p<1. Bull. Amer. Math. Soc.46, 816-832 (1940). · Zbl 0024.21101 · doi:10.1090/S0002-9904-1940-07308-2
[3] Halmos, P. R.: Measure Theory. New York 1950. · Zbl 0040.16802
[4] Livingston, A. E.: The spaceH p , 0<p<1, is not normable. Pacific J. Math.3, 613-616 (1953). · Zbl 0051.08702
[5] Mazur, S., etW. Orlicz: Sur les espaces m?triques lin?aires. I. Studia Math.10, 184-208 (1948). · Zbl 0036.07801
[6] Nakano, H.: Concave modulars. J. Math. Soc. Japan5, 29-49 (1953). · Zbl 0050.33402 · doi:10.2969/jmsj/00510029
[7] P?lya, G., u.G. Szeg?: Aufgaben und Lehrs?tze aus der Analysis. I. Berlin 1925.
[8] Tychonoff, A.: Ein Fixpunktsatz. Math. Ann.111, 767-776 (1935). · Zbl 0012.30803 · doi:10.1007/BF01472256
[9] Walters, S. S.: The spaceH p with 0<p<1. Proc. Amer. Math. Soc.1, 800-805 (1950). · Zbl 0040.06203
[10] Walters, S. S.: Remarks on the spaceH p . Pacific J. Math.1, 455-471 (1951). · Zbl 0043.11301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.