×

zbMATH — the first resource for mathematics

Sur la théorie générale des systèmes dynamiques. (French) Zbl 0071.11001

PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] G. D. BIRKHOFF. Dynamical systems, American Math. Society Colloquium Publ. vol. 9, (1927). · JFM 53.0732.01
[2] T. M. CHERRY. Topological properties of solutions of ordinary differential equations, American J. of Math., vol. 59, (1937), 956-982. · JFM 63.0422.02
[3] P. DEDEKER. Quelques aspects de la théorie des structures locales, Bulletin Soc. Math. Belg., 5, (1952), 26-43. · Zbl 0052.19701
[4] CH. EHRESMANN. Structures locales. Colloque de Topologie et de Géométrie Différentielles, Strasbourg (1952). Sur la théorie des variétés feuilletées Rendiconti Mat. Applic., 5 vol. 10, 1-19. Structures locales. Annali di Mat., 36 (1954) 133-142. · Zbl 0055.42002
[5] G. A. HEDLUNG-W. L. GOTTSCHALK. The dynamics of transformation groups. Trans. American Math. Soc., 65, (1949), 348-359 ; Topological dynamics. American Math. Soc. Coll. Publ ; (1956). · Zbl 0033.30602
[6] H. HILMY. a) Sur LES ensembles quasi-minimaux. Annals of Math., 37 (1936), 899-911. · JFM 62.0516.01
[7] H. HILMY. b) Sur LES mouvements des systèmes dynamiques qui admettent l’incompressibilité des domaines. American J. Math., 69 (1937), 803-808. · JFM 63.0728.04
[8] V. V. NEMYCKII. Topological problems of the theory of dynamical systems. Uspechi Math. Nauk. N. S., 4, (34) (1949), 91-153. American Math. Soc. Translations, 103. · Zbl 0059.08002
[9] V. V. NEMYCKII et V. V. STEPANOV. Théorie qualitative des systèmes différentiels. Moscou, 1949.
[10] G. REEB. Sur certaines propriétés topologiques des variétés feuilletées (thèse Strasbourg, 1948). Actualités scientifiques et Industrielles, Hermann, Paris (1952). · Zbl 0049.12602
[11] WHITNEY. On regular families of curves. Bull. American, Math. Soc., 47 (1941), 145-147. · JFM 67.0744.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.