×

zbMATH — the first resource for mathematics

Metrizability of decomposition spaces. (English) Zbl 0071.16001

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Paul Alexandroff, Über die Metrisation der im Kleinen kompakten topologischen Räume, Math. Ann. 92 (1924), no. 3-4, 294 – 301 (German). · JFM 50.0128.04 · doi:10.1007/BF01448011 · doi.org
[2] P. Alexandroff and H. Hopf, Topologie I, Berlin, 1935. · JFM 61.0602.07
[3] A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), no. 2, 133 – 142. · JFM 63.0571.03
[4] Sitiro Hanai, On closed mappings, Proc. Japan Acad. 30 (1954), 285 – 288. · Zbl 0073.17802
[5] Abram V. Martin, Decompositions and quasi-compact mappings, Duke Math. J. 21 (1954), 463 – 469. · Zbl 0057.14904
[6] Jun-iti Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City Univ. Ser. A. Math. 1 (1950), 93 – 100. · Zbl 0041.09801
[7] I. A. Vaiĭnšteĭn, On closed mappings of metric spaces, Doklady Akad. Nauk SSSR (N.S.) 57 (1947), 319 – 321 (Russian).
[8] A. D. Wallace, Some characterizations of interior transformations, Amer. J. Math. 61 (1939), 757 – 763. · Zbl 0021.43102 · doi:10.2307/2371332 · doi.org
[9] Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. · Zbl 0061.39301
[10] G. T. Whyburn, Open and closed mappings, Duke Math. J. 17 (1950), 69 – 74. · Zbl 0036.12403
[11] Wallace Alvin Wilson, On Semi-Metric Spaces, Amer. J. Math. 53 (1931), no. 2, 361 – 373. · Zbl 0001.22804 · doi:10.2307/2370790 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.