×

On the definition of significant multiplicity for continuous transformations. (English) Zbl 0071.27801


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lamberto Cesari, Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue, Ann. Scuola Norm. Super. Pisa (2) 11 (1942), 1 – 42 (Italian). · Zbl 0027.20604
[2] Lamberto Cesari, On the representation of surfaces, Amer. J. Math. 72 (1950), 335 – 346. · Zbl 0036.03203
[3] Herbert Federer, Surface area. II, Trans. Amer. Math. Soc. 55 (1944), 438 – 456. · Zbl 0060.14003
[4] Herbert Federer, Measure and area, Bull. Amer. Math. Soc. 58 (1952), 306 – 378. · Zbl 0046.28402
[5] Earl J. Mickle, Lebesgue area and Hausdorff measure, Rend. Circ. Mat. Palermo (2) 4 (1955), 205 – 218. · Zbl 0066.04402
[6] Tibor Radó, Length and Area, American Mathematical Society Colloquium Publications, vol. 30, American Mathematical Society, New York, 1948.
[7] Tibor Radó, Two-dimensional concepts of bounded variation and absolute continuity, Duke Math. J. 14 (1947), 587 – 608. · Zbl 0029.35002
[8] Tibor Radó, On essentially absolutely continuous plane transformations, Bull. Amer. Math. Soc. 55 (1949), 629 – 632. · Zbl 0033.10903
[9] Tibor Radó, On multiplicity functions associated with Lebesgue area, Rend. Circ. Mat. Palermo (2) 4 (1955), 219 – 236. · Zbl 0066.04501
[10] J. W. T. Youngs, A reduction theorem concerning the representation problem for Fréchet varieties, Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 328 – 330. · Zbl 0061.10905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.