×

zbMATH — the first resource for mathematics

A new fully coupled solution of the Navier-Stokes equations. (English) Zbl 0815.76054
Summary: The presented method uses a fully implicit time discretization of momentum equations, the standard linearization of convective terms, a cell-centered collocated grid approach and a block-nanodiagonal structure of the matrix of nodal unknowns. The method is specific in the interpolation used for the flux reconstruction problem, in the basis iterative method for the fully coupled system and in the acceleration means that control the global efficiency of the procedure. The performance of the method is discussed using lid-driven cavity problems, both for two- and three-dimensional geometries, for steady and unsteady flows.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Software:
YSMP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980. · Zbl 0521.76003
[2] Issa, J. Comput. Phys. 62 pp 40– (1986)
[3] Piquet, Comput. Fluids 19 pp 183– (1991)
[4] Caretto, Int. J. Heat Mass Transfer 15 pp 1878– (1972)
[5] ’Recent developments in a ship stern flow prediction code’, in K. H. Mori (ed.), Proc. 5th Symp. on Numerical Ship Hydrodynamics, Hiroshima, 1989, pp. 87-101.
[6] Vanka, J. Comput. Phys. 65 pp 138– (1986)
[7] Bruneau, J. Comput. Phys. 89 pp 389– (1990)
[8] , and , ’Application of multigrid methods for the coupled and decoupled solution of the incompressible Navier-Stokes equations’, in (ed.), Notes on Numerical Fluid Mechanics, Vol. 20, Proc. 7th GAMM Conf. on Numerical Methods in Fluid Mechanics, Vieweg, Braunschweig, 1987, pp. 1-7.
[9] , and , ’Multigrid for the steady-state incompressible Navier-Stokes equations: a survey’, GMD Arbeitspapier 322, 1988.
[10] and , ’A coupled modified strongly implicit procedure for the numerical solution of coupled continuum problem’, AIAA Paper 84-1743, 1984.
[11] Rhie, AIAA J. 21 pp 1525– (1983)
[12] Braaten, Int. j. numer, methods fluids 6 pp 325– (1986)
[13] , and , ’Yale sparse matrix package, II. The nonsymmetric codes’, Res. Rep. 114, Department of Mechanical Engineering, Yale University, 1977.
[14] Karki, Int. j. numer. methods fluids 11 pp 1– (1990)
[15] MacArthur, Int. j. numer methods fluids 9 pp 325– (1990)
[16] , and , ’Finite element algorithm for incompressible Navier-Stokes equations’, in and (eds.), Incompressible Computational Fluid Dynamics, Trends and Advances, Cambridge University Press, Cambridge, 1993, pp. 151-182. · Zbl 1189.76340 · doi:10.1017/CBO9780511574856.007
[17] Peric, Comput. Fluids 16 pp 389– (1988)
[18] Deng, Int. numer. methods eng. 31 pp 1427– (1991)
[19] and , ’Viscous flow computations using a fully-coupled technique’, Proc. 2nd Int. Colloq. on Viscous Fluid Dynamics in Ship and Ocean Technology, Osaka, 1991.
[20] Schneider, Numer Heat Transfer 11 pp 363– (1987)
[21] , , , and , First Leaves: A Tutorial Introduction to Maple V, Springer, New York, 1992. · doi:10.1007/978-1-4615-6996-1
[22] Piquet, Int. j. numer. methods fluids 16 pp 1– (1993)
[23] , , and , ’New fully-coupled solutions of the Navier-Stokes equations’, in (ed.), Notes on Numerical Fluid Mechanics, Vol. 35, Proc. 9th GAMM Conf., Vieweg, Braunschweig, 1992, pp. 191-200. · Zbl 0800.76301
[24] Sonneveld, SIAM J. Sci. Stat. Comput. 10 pp 36– (1989)
[25] Van der Vorst, SIAM J. Sci. Stat. Comput. 13 pp 631– (1990)
[26] Ghia, J. Comput. Phys. 48 pp 387– (1982)
[27] Chen, J. Comput. Phys. 53 pp 209– (1984)
[28] Takami, J. Phys. Soc. Jpn. 37 pp 1695– (1974)
[29] De Vahl Davis, Comput. Fluids 4 pp 29– (1976)
[30] Goda, J. Comput. Phys. 30 pp 76– (1979)
[31] Dennis, J. Comput. Phys. 33 pp 325– (1979)
[32] and , ’A numerical method for computing three-dimensional Navier-Stokes equations applied to cubic cavity flows with heat transfer’, in Numerical Methods in Laminar and Turbulent Flows, Vol. 4, Pineridge, Swansea, 1983, pp. 786-797.
[33] , , , and , ’A three-dimensional lid-driven cavity flow: experiment and simulation’, in Numerical Methods in Laminar and Turbulent Flows, Vol. 4, Pineridge, Swansea, 1983, pp. 564-581.
[34] Kim, J. Comput. Phys. 59 pp 308– (1985)
[35] Vanka, Comput. Methods Appl. Mech. Eng. 55 pp 321– (1986)
[36] and , ’A direct algorithm for solution of incompressible three-dimensional unsteady Navier-Stokes equations’, AIAA Paper 87-1139, 1987.
[37] Perng, Int. j. numer methods fluids 9 pp 341– (1989)
[38] and , ’A finite difference scheme for three-dimensional steady laminar incompressible flow’, in Numerical Methods in Laminar and Turbulent Flows, Vol. 5, Pineridge, Swansea, 1987, pp. 244-260.
[39] and , ’Calculation of 3-D laminar flows with complex boundaries using a multigrid method’, in (ed.), Notes on Numerical Fluid Mechanics, Vol. 23 Vieweg, Braunschweig, 1990, pp. 446-453.
[40] Kawai, JSME Int. J. 33 pp 17– (1990)
[41] Ku, J. Comput. Phys. 70 pp 439– (1987)
[42] Freitas, Int. j. numer. methods fluids 5 pp 561– (1985)
[43] Iwatsu, Fluid Dyn. Res. 5 pp 173– (1989)
[44] Koseff, J. Fluids Eng. 106 pp 21– (1984)
[45] Koseff, J. Fluids Eng. 106 pp 385– (1984)
[46] Koseff, J. Fluids Eng. 106 pp 390– (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.