×

zbMATH — the first resource for mathematics

The characters of semisimple Lie groups. (English) Zbl 0072.01801

Keywords:
group theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Elie Cartan, Sur certaines formes Riemanniennes remarquables des géométries à groupe fondamental simple, Ann. Sci. École Norm. Sup. (3) 44 (1927), 345 – 467 (French). · JFM 53.0393.01
[2] (b) J. Math Pures Appl. vol. 8 (1929) pp. 1-33.
[3] C. Chevalley, Theory of Lie groups, Princeton University Press, 1946. · Zbl 0063.00842
[4] Lars Gårding, Dirichlet’s problem for linear elliptic partial differential equations, Math. Scand. 1 (1953), 55 – 72. · Zbl 0053.39101
[5] I. M. Gelfand and M. A. Naimark, Trudi Mat. Inst. Steklova vol. 36 (1950).
[6] Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496 – 556. · Zbl 0049.20103
[7] Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900 – 915. · Zbl 0035.01901
[8] Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28 – 96. · Zbl 0042.12701
[9] Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185 – 243. · Zbl 0051.34002
[10] Harish-Chandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234 – 253. · Zbl 0055.34002
[11] Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485 – 528. · Zbl 0055.34003
[12] Harish-Chandra, Representations of semisimple Lie groups. IV, Amer. J. Math. 77 (1955), 743 – 777. · Zbl 0066.35603
[13] Harish-Chandra, Representations of semisimple Lie groups. V, Amer. J. Math. 78 (1956), 1 – 41. · Zbl 0070.11602
[14] Harish-Chandra, On the characters of a semisimple Lie group, Bull. Amer. Math. Soc. 61 (1955), 389 – 396. · Zbl 0065.35002
[15] Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507 – 558. · Zbl 0034.01803
[16] Fritz John, General properties of solutions of linear elliptic partial differential equations, Proceedings of the Symposium on Spectral Theory and Differential Problems, Oklahoma Agricultural and Mechanical College, Stillwater, Okla., 1951, pp. 113 – 175.
[17] Jean-Louis Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65 – 127 (French). · Zbl 0039.02901
[18] George Daniel Mostow, A new proof of E. Cartan’s theorem on the topology of semi-simple groups, Bull. Amer. Math. Soc. 55 (1949), 969 – 980. · Zbl 0037.01401
[19] Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966 (French). · Zbl 0962.46025
[20] E. Stiefel, Über eine Beziehung zwischen geschlossenen Lie’schen Gruppen und diskontinuierlichen Bewegungsgruppen euklidischer Räume und ihre Anwendung auf die Aufzählung der einfachen Lie’schen Gruppen, Comment. Math. Helv. 14 (1942), 350 – 380 (German). · Zbl 0026.38603
[21] B. L. van der Waerden, Moderne Algebra, Berlin, Springer, 1937. · Zbl 0016.33902
[22] H. Weyl, (a) Math. Zeit. vol. 24 (1925) pp. 328-395.
[23] (b) The structure and representations of continuous groups, Princeton, The Institute for Advanced Study, 1935.
[24] (c) The classical groups, Princeton University Press, 1939.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.