×

Nouvelle démonstration du théorème fondamental sur la convergence des potentiels. (French) Zbl 0072.10903


PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] M. BRELOT, Sur le potentiel et LES suites de fonctions sousharmoniques, C. R. Ac. Sc., t. 207 (1938), p. 836. · JFM 64.0475.01
[2] M. BRELOT, Sur la théorie autonome des fonctions sousharmoniques, Bull. Sc. Math., 65 (1941). · JFM 67.0349.01
[3] M. BRELOT, Minorantes sousharmoniques, extrémales et capacités, J. de Math., 24 (1945), p. 1-32. · Zbl 0061.22802
[4] M. BRELOT, Fonctions sousharmoniques, presque sousharmoniques ou sous-médianes, Ann. de l’Un. de Grenoble, t. 21 (1945), p. 75-90. · Zbl 0061.22606
[5] M. BRELOT, A new proof of the fundamental theorem of kellogg-Evans on the set of irregular points in the Dirichlet problem, Rend. del circ. mat. Palermo, Ser. II, IV (1955), p. 112-121. · Zbl 0065.33602
[6] H. CARTAN, Théorie du potentiel newtonien, énergie, capacité, suites de potentiels, Bull. Soc. Math., 73 (1945), p. 74-106. · Zbl 0061.22609
[7] G. CHOQUET, Theory of capacities, Annales Inst. Fourier, t. 5 (1953-1954), p. 131-295. · Zbl 0064.35101
[8] G. C. EVANS, Application of Poincaré’s sweeping out process, Proc. nat. Ac. of Sc., 19 (1933), p. 457-461. · JFM 59.0482.02
[9] T. RADO, Subharmonic functions, Ergebn. der Math., Bd 5, 1, Berlin, Springer (1937). · JFM 63.0458.05
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.