×

zbMATH — the first resource for mathematics

Interpolation of linear operators. (English) Zbl 0072.32402

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Banach, Théorie des opérations linéaires, Warsaw, 1932. · JFM 58.0420.01
[2] Salomon Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), no. 2, 175 – 207. · Zbl 0015.15702
[3] A. P. Calderón and A. Zygmund, On the theorem of Hausdorff-Young and its extensions, Contributions to Fourier Analysis, Annals of Mathematics Studies, no. 25, Princeton University Press, Princeton, N. J., 1950, pp. 166 – 188.
[4] I. I. Hirschman Jr., Weighted quadratic norms and Legendre polynomials, Canad. J. Math. 7 (1955), 462 – 482. · Zbl 0067.04101 · doi:10.4153/CJM-1955-050-x · doi.org
[5] I. I. Hirschman Jr., A convexity theorem for certain groups of transformations, J. Analyse Math. 2 (1953), 209 – 218. · Zbl 0052.06302 · doi:10.1007/BF02825637 · doi.org
[6] -, Decomposition of Walsh and Fourier series, Memoirs of the American Mathematical Society, no. 15. · Zbl 0067.04102
[7] H. R. Pitt, Theorems on Fourier series and power series, Duke Math. J. 3 (1937), no. 4, 747 – 755. · Zbl 0018.01703 · doi:10.1215/S0012-7094-37-00363-6 · doi.org
[8] M. Riesz, Sur les maximas des formes bilinéaires et sur les fonctionelles linéaires, Acta Math. vol. 49 (1926) pp. 464-497. · JFM 53.0259.03
[9] J. D. Tamarkin and A. Zygmund, Proof of a theorem of Thorin, Bull. Amer. Math. Soc. 50 (1944), 279 – 282. · Zbl 0060.24104
[10] G. O. Thorin, An extension of a convexity theorem due to M. Riesz, Kungl. Fysiografiska Saellskapets i Lund Förhandlingar, no. 14, vol. 8 (1939). · JFM 65.0215.02
[11] -, Convexity theorems, Uppsala, 1948, pp. 1-57.
[12] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge, 1922. · JFM 48.0412.02
[13] A. Zygmund, Trigonometrical series, Warsaw, 1935. · Zbl 0011.01703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.