×

Jordan homomorphisms. (English) Zbl 0073.02202


Keywords:

Lattices; Rings; Fields
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] G. Ancochea, Le théorème de von Staudt en géométrie projective quaternionienne, J. Reine Angew. Math. 184 (1942), 193 – 198 (French). · Zbl 0027.12102
[2] Germán Ancochea, On semi-automorphisms of division algebras, Ann. of Math. (2) 48 (1947), 147 – 153. · Zbl 0029.10703
[3] M. Gerstenhaber, A note on linearization (forthcoming). · Zbl 0183.04201
[4] Loo-Keng Hua, On the automorphisms of a sfield, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 386 – 389. · Zbl 0033.10402
[5] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479 – 502. · Zbl 0039.26402
[6] Irving Kaplansky, Semi-automorphisms of rings, Duke Math. J. 14 (1947), 521 – 525. · Zbl 0029.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.