Williams, R. F. Reduction of open mappings. (English) Zbl 0073.17901 Proc. Am. Math. Soc. 7, 312-318 (1956). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Keywords:Topology PDFBibTeX XMLCite \textit{R. F. Williams}, Proc. Am. Math. Soc. 7, 312--318 (1956; Zbl 0073.17901) Full Text: DOI References: [1] R. D. Anderson, On monotone interior mappings in the plane, Trans. Amer. Math. Soc. 73 (1952), 211 – 222. · Zbl 0048.41104 [2] D. van Dantzig, Über topologisch homogene Kontinua, Fund. Math. vol. 15 (1930) p. 102. · JFM 56.1130.01 [3] Eldon Dyer, Irreducibility of the sum of the elements of a continuous collection of continua, Duke Math. J. 20 (1953), 589 – 592. · Zbl 0052.39603 [4] Mary-Elizabeth Hamstrom, Concerning continuous collections of continuous curves, Proc. Amer. Math. Soc. 4 (1953), 240 – 243. · Zbl 0052.19001 [5] B. Knaster, Un continu irréductible à décomposition continue en tranches, Fund. Math. vol. 25 (1935) p. 577. · Zbl 0012.31904 [6] Edwin E. Moise, A theorem on monotone interior transformations, Bull. Amer. Math. Soc. 55 (1949), 810 – 811. · Zbl 0035.39201 [7] J. Rozanska, Über stetige Abbildungen eines Elementes, Fund. Math. vol. 28 (1937) p. 266. · Zbl 0016.18301 [8] G. T. Whyburn, Arc-Preserving Transformations, Amer. J. Math. 58 (1936), no. 2, 305 – 312. · JFM 62.0691.02 · doi:10.2307/2371040 [9] G. T. Whyburn, On irreducibility of transformations, Amer. J. Math. 61 (1939), 820 – 822. · JFM 65.0886.02 · doi:10.2307/2371627 [10] R. F. Williams, Local properties of open mappings, Duke Math. J. 22 (1955), 339 – 345. · Zbl 0065.38201 [11] Wallace Alvin Wilson, On the Structure of a Continuum, Limited and Irreducible Between Two Points, Amer. J. Math. 48 (1926), no. 3, 147 – 168. · JFM 52.0602.01 · doi:10.2307/2370590 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.