×

Some new developments in Markov chains. (English) Zbl 0075.14001


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Donald G. Austin, On the existence of the derivative of Markoff transition probability functions, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 224 – 226. · Zbl 0068.12503
[2] K. L. Chung, Foundations of the theory of continuous parameter Markov chains, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954 – 1955, vol. II, University of California Press, Berkeley and Los Angeles, 1956, pp. 29 – 40.
[3] J. L. Doob, Topics in the theory of Markoff chains, Trans. Amer. Math. Soc. 52 (1942), 37 – 64. · Zbl 0063.09001
[4] J. L. Doob, Markoff chains — denumerable case, Trans. Amer. Math. Soc. 58 (1945), 455 – 473. · Zbl 0063.01146
[5] J. L. Doob, Renewal theory from the point of view of the theory of probability, Trans. Amer. Math. Soc. 63 (1948), 422 – 438. · Zbl 0041.45405
[6] -, Stochastic processes, New York, 1953.
[7] A. N. Kolmogorov, On the differentiability of the transition probabilities in stationary Markov processes with a denumberable number of states, Moskov. Gos. Univ. Učenye Zapiski Matematika 148(4) (1951), 53 – 59 (Russian).
[8] Paul Lévy, Systèmes markoviens et stationnaires. Cas dénombrable, Ann. Sci. École Norm. Sup. (3) 68 (1951), 327 – 381 (French). · Zbl 0044.33803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.