×

zbMATH — the first resource for mathematics

On monothetic semigroups. (English) Zbl 0078.01801

Keywords:
Group Theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. H. Clifford, Semigroups containing minimal ideals, Amer. J. Math. 70 (1948), 521 – 526. · Zbl 0038.01103
[2] Robert Ellis, Continuity and homeomorphism groups, Proc. Amer. Math. Soc. 4 (1953), 969 – 973. · Zbl 0052.39602
[3] B. Gelbaum, G. K. Kalisch, and J. M. H. Olmsted, On the embedding of topological semigroups and integral domains, Proc. Amer. Math. Soc. 2 (1951), 807 – 821. · Zbl 0045.00801
[4] W. H. Gottschalk, Almost period points with respect to transformation semi-groups, Ann. of Math. (2) 47 (1946), 762 – 766. · Zbl 0063.01713
[5] Paul R. Halmos and H. Samelson, On monothetic groups, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 254 – 258. · Zbl 0063.01893
[6] J. L. Kelley, Convergence in topology, Duke Math. J. 17 (1950), 277 – 283. · Zbl 0038.27003
[7] R. J. Koch, Remarks on primitive idempotents in compact semigroups with zero, Proc. Amer. Math. Soc. 5 (1954), 828 – 833. · Zbl 0056.02704
[8] Katsumi Numakura, On bicompact semigroups, Math. J. Okayama Univ. 1 (1952), 99 – 108. · Zbl 0047.25502
[9] Katumi Numakura, On bicompact semigroups with zero, Bull. Yamagata Univ. (Nat. Sci.) 1951 (1951), no. 4, 405 – 412.
[10] J. E. L. Peck, An ergodic theorem for a noncommutative semigroup of linear operators, Proc. Amer. Math. Soc. 2 (1951), 414 – 421. · Zbl 0043.33301
[11] A. D. Wallace, A note on mobs, Anais Acad. Brasil. Ci. 24 (1952), 329 – 334. · Zbl 0049.01503
[12] A. D. Wallace, Inverses in Euclidean mobs, Math. J. Okayama Univ. 3 (1953), 23 – 28. · Zbl 0052.02504
[13] A. Weil, L’intégration dans les groupes topologiques et ses applications, Actualités Scientifiques No. 869, Paris, Hermann, 1938.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.