×

zbMATH — the first resource for mathematics

Oscillation criteria for second-order linear differential equations. (English) Zbl 0078.07602

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. · Zbl 0051.28802
[2] William Benjamin Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), no. 4, 341 – 352.
[3] Philip Hartman and Aurel Wintner, The asymptotic arcus variation of solutions of real linear differential equations of second order, Amer. J. Math. 70 (1948), 1 – 10. · Zbl 0035.18203
[4] Einar Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234 – 252. · Zbl 0031.35402
[5] Adolf Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 42 (1893), no. 3, 409 – 435 (German). · JFM 25.0522.01
[6] Walter Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J. 17 (1950), 57 – 61. · Zbl 0036.06101
[7] Walter Leighton, On self-adjoint differential equations of second order, J. London Math. Soc. 27 (1952), 37 – 47. · Zbl 0048.06503
[8] Richard A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math. 5 (1955), 125 – 145. · Zbl 0064.08401
[9] Ruth Lind Potter, On self-adjoint differential equations of second order, Pacific J. Math. 3 (1953), 467 – 491. · Zbl 0051.06502
[10] A. Wiman, Über die reellen Lösungen der linearen Differentialgleichungen zweiter Ordnung, Arkiv för Matematik Astronomi och Fysik vol. 12 No. 14 (1917). · JFM 46.0666.04
[11] Aurel Wintner, On the Laplace-Fourier transcendents occurring in mathematical physics, Amer. J. Math. 69 (1947), 87 – 98. · Zbl 0034.36701
[12] Aurel Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115 – 117. · Zbl 0032.34801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.