zbMATH — the first resource for mathematics

Sparse matrix multiplication package (SMMP). (English) Zbl 0824.65024
Summary: Routines callable from Fortran and C are described which implement matrix-matrix multiplication and transposition for a variety of sparse matrix formats. Conversion routines between various formats are provided.

65F50 Computational methods for sparse matrices
65F30 Other matrix algorithms (MSC2010)
15-04 Software, source code, etc. for problems pertaining to linear algebra
65Y15 Packaged methods for numerical algorithms
Full Text: DOI
[1] R.E. Bank and R.K. Smith, General sparse elimination requires no permanent integer storage, SIAM J. Sci. Stat. Comp. 8(1987)574–584. · Zbl 0622.65021 · doi:10.1137/0908052
[2] C.C. Douglas and W.L. Miranker, Constructive interference in parallel algorithms, SIAM J. Numer. Anal. 25(1988)376–398. · Zbl 0698.65023 · doi:10.1137/0725026
[3] C.C. Douglas and B.F. Smith, Using symmetries and antisymmetries to analyze a parallel multigrid algorithm: The elliptic boundary value case, SIAM J. Numer. Anal. 26(1989)1439–1461. · Zbl 0688.65060 · doi:10.1137/0726084
[4] S.C. Eisenstat, H.C. Elman, M.H. Schultz and A.H. Sherman, The (new) Yale sparse matrix package, in:Elliptic Problem Solvers II, ed. G. Birkoff and A. Schienstadt (Academic Press, New York, 1984) pp. 45–52. · Zbl 0562.65014
[5] S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman, Yale sparse matrix package I: The symmetric codes, Int. J. Numer. Meth. Eng. 18(1982)1145–1151. · Zbl 0492.65012 · doi:10.1002/nme.1620180804
[6] S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman, Yale sparse matrix package II: The nonsymmetric codes, Research Report 114, Department of Computer Science, Yale University, New Haven, CT (1977). · Zbl 0492.65012
[7] I. Duff, M. Marrone and G. Radicati, A proposal for user level sparse BLAS, in preparation. · Zbl 0903.65041
[8] M.A. Heroux, Proposal for a sparse BLAS toolkit, in preparation.
[9] Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computations, preliminary version (1990). Available by anonymous ftp from riacs.edu.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.