×

zbMATH — the first resource for mathematics

Extremal length and functional completion. (English) Zbl 0079.27703

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Ahlfors &A. Beurling, Conformal invariants and function-theoretic null-sets.Acta Math., 83 (1950), 101–129, in particular pp. 114 f. · Zbl 0041.20301 · doi:10.1007/BF02392634
[2] N. Aronszajn, Noyaux pseudo-reproduisants et complétion des classes hilbertiennes.C. R. Acad. Sci. Paris, 226 (1948), 537–539. · Zbl 0030.36005
[3] N. Aronszajn & K. T. Smith, Functional spaces and functional completion.Studies in eigenvalue problems, 10. Lawrence, 1954.
[4] W. Blaschke, Integralgeometrie I.Actualités sci. et ind., 252. Paris, 1935.
[5] M. Bôcher, On harmonic functions in two dimensions.Proc. Amer. Acad. Sci., 41 (1905–1906), 577–583. · doi:10.2307/20022127
[6] A. P. Calderon &A. Zygmund, On the existence of certain singular integrals.Acta Math. 88 (1952), 85–139. · Zbl 0047.10201 · doi:10.1007/BF02392130
[7] L. Carleson,On a Class of Meromorphic Functions and Its Associated Exceptional Sets. Thesis. Uppsala, 1950. · Zbl 0036.04701
[8] H. Cartan, Théorie du potentiel newtonien: Energie, capacité, suites de potentiels.Bull. Soc. Math. France, 73 (1945), 74–106. · Zbl 0061.22609
[9] J. Deny, Sur la convergence de certaines intégrales de la théorie du potentiel.Arch. Math., 5 (1954). 367–370. · Zbl 0057.33104 · doi:10.1007/BF01898378
[10] J. Deny &J. L. Lions, Les espaces du type de Beppo Levi.Annales de l’Institut Fourier, 5 (1954), 305–370. · Zbl 0065.09903
[11] G. C. Evans, Note on a theorem of Bôcher.Amer. J. Math., 50 (1928), 123–126. · JFM 54.0508.01 · doi:10.2307/2370852
[12] K. O. Friedrichs, On differential operators in Hilbert spaces.Amer. J. Math., 61 (1939), 523–544. · Zbl 0020.36802 · doi:10.2307/2371518
[13] –, The identity of weak and strong extensions of differential operators.Trans. Amer. Math. Soc., 55 (1944), 132–151. · Zbl 0061.26201
[14] O. Frostman, Potentiel d’équilibre et capacités des ensembles.Meddelanden från Lunds universitets matematiska seminarium, 3 (1935).
[15] B. Fuglede. An integral formula. (To appear inMath. Scand.)
[16] B. Fuglede, On generalized potentiels of functions in the Lebesgue classes. (To appear inMath. Scand.)
[17] G. Herglotz,Geometrische Wahrscheinlichkeiten. (Vorlesung), Göttingen, 1933.
[18] J. Hersch, Longeurs extrémales, mosure harmonique et distance hyperbolique.C. R. Acad. Sci. Paris, 235 (1952), 569–571. · Zbl 0049.33202
[19] –, ”Longeurs extrémales” dans l’espace, résistance électrique et capacité.C. R. Acad. Sci. Paris, 238 (1954), 1639–1641.
[20] L. Hörmander, On the theory of general partial differential operators.Acta Math., 94 (1955), 161–248. · Zbl 0067.32201 · doi:10.1007/BF02392492
[21] J. A. Jenkins, Some results related to extremal length.Annals of Mathematics Studies, 30 (Contributions to the theory of Riemann surfaces), pp. 87–94. Princeton, 1953. · Zbl 0052.08104
[22] S. Kametani, On Hausdorff’s measures and generalized capacities with some of their applications to the theory of functions.Jap. J. Math., 19 (1944), 217–257. · Zbl 0061.22704
[23] –, A note on a metric property of capacity.Nat. Sci. Rep. Ochanomizu Univ., 4 (1953), 51–54. · Zbl 0087.30602
[24] O. D. Kellogg,Foundations of Potential Theory. Berlin, 1929. · JFM 55.0282.01
[25] B. Levi, Sul principio di Dirichlet.Rend. Circ. Mat. Palermo, 22 (1906), 293–359. · JFM 37.0414.04 · doi:10.1007/BF03018622
[26] J. E. Littlewood &N. du Plessis, A theorem about fractional integrals.Proc. Amer. Math. Soc., 3 (1952), 892–898. · doi:10.1090/S0002-9939-1952-0051909-2
[27] P. J. Myrberg, Über die Existenz der Greenschen Funktionen auf einer gegebenen Riemannschen Fläche.Acta Math., 61 (1933) 39–79. · Zbl 0007.16305 · doi:10.1007/BF02547786
[28] B. Sz. Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes.Ergebnisse d. Math., V, 5. Berlin, 1942.
[29] O. Nikodym, Sur une classe de fonctions considérées dans le problème de Dirichlet.Fund. Math., 21 (1933), 129–150. · JFM 59.0290.01
[30] G. Pólya &G. Szegö, Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen.J. Reine Angew. Math., 165 (1931), 4–49, in particular § 11. · JFM 57.0094.03
[31] –, Isoperimetric inequalities in mathematical physics.Ann. Math. Studies, 27 (in particular pp. 45–49). Princeton, 1951. · Zbl 0044.38301
[32] H. Rademacher, Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variablen und über die Transformationen der Doppelintegrale.Math. Ann., 79 (1919), 340–359. · JFM 47.0243.01 · doi:10.1007/BF01498415
[33] J. P. Schauder, The theory of surface measure.Fund. Math., 8 (1926), 1–48. · JFM 52.0250.02
[34] L. Schwartz,Théorie des distributions I–II. Paris, 1950–51.
[35] J. L. Walsh, The location of critical points of analytic and harmonic functions.Amer. Math. Soc. Coll. Publ., 34. New York, 1950. · Zbl 0041.04101
[36] H. Weyl, The method of orthogonal projection in potential theory.Duke Math. J., 7 (1940), 411–444. · Zbl 0026.02001 · doi:10.1215/S0012-7094-40-00725-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.