×

zbMATH — the first resource for mathematics

Sur les représentations unitaires des groupes de Lie algébriques. (French) Zbl 0080.32101

PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] V. BARGMANN, On unitary ray representations of continuous groups, Ann. of Math., 59 (1954), p. 1-46. · Zbl 0055.10304
[2] C. CHEVALLEY, Théorie des groupes de Lie, t. II, Act. Sc. Ind., n° 1152, Paris, Hermann, 1951. · Zbl 0054.01303
[3] C. CHEVALLEY, Théorie des groupes de Lie, t. III, Act. sc. Ind., n° 1226, Paris, Hermann, 1955.
[4] C. CHEVALLEY, à paraître.
[5] J. DIXMIER, LES algèbres d’opérateurs dans l’espace hilbertien, Cahiers scientifiques, n° XXV, Paris, Gauthier-Villars, 1957. · Zbl 0088.32304
[6] J. DIXMIER, Sur LES représentations unitaires des groupes de Lie nilpotents, à paraître au Journ. de Math. · Zbl 0171.11702
[7] HARISH-CHANDRA, Representations of a semi-simple Lie group on a Banach space I, Trans. Amer. Math. Soc., 75 (1953), p. 185-243. · Zbl 0051.34002
[8] G. W. MACKEY, Imprimitivity for representations of locally compact groups I, Proc. Nat. Acad. Sc. U.S.A., 95 (1949), p. 537-545. · Zbl 0035.06901
[9] G. W. MACKEY, Induced representations of locally compact groups I, Ann. of Math., 55 (1952), p. 101-139. · Zbl 0046.11601
[10] G. W. MACKEY, The theory of group representations, cours miméographié, Université de Chicago, 1955.
[11] F. I. MAUTNER, Unitary representations of locally compact groups I, Ann. of Math., 51 (1950), p. 1-25. · Zbl 0035.29802
[12] J. VON NEUMANN, Die eindeutigkeit der schrödingerschen operatoren, Mathematische Annalen, 104 (1931), p. 570-578. · JFM 57.1446.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.