×

Note on absolutely convergent Dirichlet series. (English) Zbl 0081.06804


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Harald Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen \( \sum {{a_n}/{n^8}} \), Nachrichten Königl. Gesellschaft Wiss. Göttingen, Math.-Phys. Kl. (1913) pp. 441-488.
[2] I. Gelfand, Über absolut konvergente trigonometrische Reihen und Integrale, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 51 – 66 (German, with Russian summary).
[3] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. · Zbl 0058.03301
[4] Edwin Hewitt and Herbert S. Zuckerman, Harmonic analysis for certain semigroups, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 253 – 255. · Zbl 0071.11301
[5] Edwin Hewitt and Herbert S. Zuckerman, The \?\(_{1}\)-algebra of a commutative semigroup, Trans. Amer. Math. Soc. 83 (1956), 70 – 97. · Zbl 0072.12701
[6] Einar Hille, The inversion problem of Möbius, Duke Math. J. 3 (1937), no. 4, 549 – 568. · Zbl 0018.00604 · doi:10.1215/S0012-7094-37-00344-2
[7] Edmund Landau, Über den Wertevorrat von \( \zeta (s)\) in der Halbebene \( \sigma > 1\), Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1933) pp. 81-91. · Zbl 0006.29303
[8] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. · Zbl 0052.11701
[9] R. S. Phillips, Spectral theory for semi-groups of linear operators, Trans. Amer. Math. Soc. 71 (1951), 393 – 415. · Zbl 0045.21502
[10] Yu. A. Šreĭder, The structure of maximal ideals in rings of measures with convolution, Mat. Sbornik N.S. 27(69) (1950), 297 – 318 (Russian).
[11] Norbert Wiener, The Fourier integral and certain of its applications, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1933 edition; With a foreword by Jean-Pierre Kahane. · Zbl 0656.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.