×

Proper bases and linear homeomorphisms in spaces of analytic functions. (English) Zbl 0081.10802


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Arsove, M. G.: Proper bases and automorphisms in the space of entire functions. Proc. Amer. Math. Soc.8, 264-271 (1957). · Zbl 0077.31401
[2] Arsove, M. G.: Proper Pincherle bases in the space of entire functions. Quart. J. Math. (Oxford) (2)9, 40-54 (1958). · Zbl 0082.05604
[3] Arsove M. G.: Similar bases and isomorphisms in Fréchet spaces. Math. Ann.135, (1958). · Zbl 0081.10901
[4] Banach, S.: Théorie des opérations linéaires. Varsovie 1932.
[5] Bourbaki, N.: Espaces vectoriels topologiques; Chapitres I, II. Paris 1953. · Zbl 0050.10703
[6] Ganapathy Iyer, V.: On the space of integral functions (III). Proc. Amer. Math. Soc.3, 874-883 (1952). · Zbl 0049.08303
[7] Haplanov, M. G.: Linear transformations of analytic spaces. Doklady Akad. Nauk SSSR80, 21-24 (1951).
[8] Haplanov, M. G.: A matrix criterion for a basis in the space of analytic functions. Doklady Akad. Nauk SSSR80, 177-180 (1951).
[9] Hardy, G. H.: On the mean modulus of an analytic function. Proc. London Math. Soc.14, 269-277 (1915). · JFM 45.1331.03
[10] Karlin, S.: Bases in a Banach space. Duke Math. J.15, 971-985 (1948). · Zbl 0032.03102
[11] Knopp, K.: Theory and application of infinite series. London 1928. · JFM 54.0222.09
[12] Köthe, G.: Dualität in der Funktionentheorie. J. reine angew. Math.191, 30-49 (1953). · Zbl 0050.33502
[13] Newns, W. F.: On the representation of analytic functions by infinite series. Phil. Trans. Roy. Soc. London (A)245, 429-468 (1953). · Zbl 0050.07702
[14] Toeplitz, O.: Die linearen vollkommenen Räume der Funktionentheorie. Comm. Math. Helv.23, 222-242 (1949). · Zbl 0035.07301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.