×

zbMATH — the first resource for mathematics

Harmonic integrals on almost product manifolds. (English) Zbl 0081.31602

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Armand Borel and André Lichnerowicz, Groupes d’holonomie des variétés riemanniennes, C. R. Acad. Sci. Paris 234 (1952), 1835 – 1837 (French). · Zbl 0046.39801
[2] E. Cartan, Les groupes d’holonomie des espaces généralisés, Acta Math. vol. 48 (1926) pp. 1-42. · JFM 52.0723.01
[3] S. S. Chern, Differentiable manifolds (Mimeographed notes), University of Chicago, 1950. · Zbl 0099.37402
[4] Shiing-shen Chern, Topics in differential geometry, The Institute for Advanced Study, Princeton, N. J., 1951. · Zbl 0054.06801
[5] P. E. Conner, The Neumann’s problem for differential forms on Riemannian manifolds, Mem. Amer. Math. Soc. No. 20 (1956), 56. · Zbl 0070.31404
[6] A. Denjoy, Sur les courbes définis par les équations différentielles à la surface du tore, J. Math. Pures Appl. ser. 9 vol. 11 (1932) pp. 333-375. · JFM 58.1124.04
[7] G. F. D. Duff and D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math. (2) 56 (1952), 128 – 156. · Zbl 0049.18901 · doi:10.2307/1969771 · doi.org
[8] Matthew P. Gaffney, The heat equation method of Milgram and Rosenbloom for open Riemannian manifolds, Ann. of Math. (2) 60 (1954), 458 – 466. · Zbl 0057.07501 · doi:10.2307/1969846 · doi.org
[9] Matthew P. Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc. 78 (1955), 426 – 444. · Zbl 0064.34303
[10] V. K. A. M. Gugenheim and D. C. Spencer, Chain homotopy and the de Rham theory, Proc. Amer. Math. Soc. 7 (1956), 144 – 152. · Zbl 0070.40101
[11] André Haefliger, Sur les feuilletages analytiques, C. R. Acad. Sci. Paris 242 (1956), 2908 – 2910 (French). · Zbl 0071.17501
[12] E. R. Van Kampen, The Topological Transformations of a Simple Closed Curve Into Itself, Amer. J. Math. 57 (1935), no. 1, 142 – 152. · JFM 61.0627.02 · doi:10.2307/2372026 · doi.org
[13] Hellmuth Kneser, Reguläre Kurvenscharen auf den Ringflächen, Math. Ann. 91 (1924), no. 1-2, 135 – 154 (German). · JFM 50.0371.03 · doi:10.1007/BF01498385 · doi.org
[14] Kunihiko Kodaira, Harmonic fields in Riemannian manifolds (generalized potential theory), Ann. of Math. (2) 50 (1949), 587 – 665. · Zbl 0034.20502 · doi:10.2307/1969552 · doi.org
[15] J. F. Koksma, Diophantische Approximationen, Ergebnisse der Mathematik vol. 4 (1936) no. 4. · JFM 62.0173.01
[16] Charles B. Morrey Jr. and James Eells Jr., A variational method in the theory of harmonic integrals. I, Ann. of Math. (2) 63 (1956), 91 – 128. · Zbl 0070.09901 · doi:10.2307/1969992 · doi.org
[17] H. K. Nickerson and D. C. Spencer, Differentiable manifolds and sheaves (Notes), Princeton University, 1955.
[18] Georges Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Ind., no. 1183, Hermann & Cie., Paris, 1952 (French). Publ. Inst. Math. Univ. Strasbourg 11, pp. 5 – 89, 155 – 156. · Zbl 0049.12602
[19] G. de Rham, Variétés différentiables, Paris, Hermann et Cie., 1955. · Zbl 0065.32401
[20] Georges de Rham, Sur la reductibilité d’un espace de Riemann, Comment. Math. Helv. 26 (1952), 328 – 344 (French). · Zbl 0048.15701 · doi:10.1007/BF02564308 · doi.org
[21] F. Riesz and B. Sz.-Nagy, Leçons d’analyse fonctionnelle, 2d. ed., Budapest, Académie des Sciences de Hongrie, 1953. · Zbl 0051.08403
[22] Menahem Schiffer and Donald C. Spencer, Functionals of finite Riemann surfaces, Princeton University Press, Princeton, N. J., 1954. · Zbl 0059.06901
[23] Séminaire de topologie algébrique 1950-1951 (Polycopied notes), Paris, Secretariat Mathematique.
[24] Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197 – 278 (French). · Zbl 0067.16201 · doi:10.2307/1969915 · doi.org
[25] Carl Ludwig Siegel, Note on the differential equations on the torus, Ann. of Math. (2) 46 (1945), 423 – 428. · Zbl 0061.19510 · doi:10.2307/1969161 · doi.org
[26] D. C. Spencer, Potential theory and almost-complex manifolds, Lectures on functions of a complex variable, The University of Michigan Press, Ann Arbor, 1955, pp. 15 – 43.
[27] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. · Zbl 0054.07103
[28] Walter L. Baily Jr., The decomposition theorem for \?-manifolds, Amer. J. Math. 78 (1956), 862 – 888. · Zbl 0173.22705 · doi:10.2307/2372472 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.