×

zbMATH — the first resource for mathematics

Analysis of implicit hyperbolic multivariable systems. (English) Zbl 0832.65105
Coupled distributed parameter systems described by a system of partial differential equations with singular matrix coefficients are considered. A classification of such systems is provided. Some properties of the systems are analyzed using the spectral theory of matrix polynomial pencils. The theory is applied to the analysis of the transient behaviour of superconducting energy storage coils.

MSC:
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35L45 Initial value problems for first-order hyperbolic systems
Software:
Matlab; SPICE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Solnechnyj, E.M., Singular systems and their applications in design of systems with generalized controllability, (1989), Nauka Moscow, (in Russian)
[2] Jodar, L.; Legua, Fernandez M., An implicit method for the numerical solution of coupled systems of partial differential equations, Appl. math. comp., 346, 1127-1134, (1991) · Zbl 0744.65058
[3] Trzaska, Z.; Marszalek, W., On singular distributed parameter systems, (), 208-305, (5) · Zbl 0786.93054
[4] Kaganov, Z.G., Electric distributed parameter systems and ladder networks, (1990), Energoatomizdat Moscow, (in Russian)
[5] Lions, J.-L., Controle des systemes distribues singuliers, (1983), Gauthier-Villars Paris · Zbl 0514.93001
[6] Brenan, K.E.; Campbell, S.L.; Petzold, L.R., Numerical solution of initial-value problems in differential-algebraic equations, (1989), North-Holland New York · Zbl 0699.65057
[7] Campbell, S.L., Singular systems of differential equations, (1980), Pitman New York · Zbl 0419.34007
[8] Campbell, S.L.; Meyer, C.D., Generalized inverse of linear transformations, (1979), Dover Press New York
[9] Lewis, F.L., A survey of linear singular systems, Circuits, systems sig. process, 5, 3, 3-36, (1986) · Zbl 0613.93029
[10] Marszalek, W., Structure analysis of singular systems with orthogonal functions, (), Elektryka, No. 30, Opole · Zbl 0734.93023
[11] Markus, A.S., Introduction to the spectral theory of polynomial operator pencils, (), (1) · Zbl 0678.47006
[12] Trzaska, Z., Modified numerical triangle and Fibonacci sequence, Fibonacci Q. J., 32, 2, 124-129, (1994) · Zbl 0822.11017
[13] Brualdi, R.A.; Ryder, H.J., Combinatorial matrix theory, (1991), Cambridge Univ. Press New York
[14] (), Version 3.5g
[15] Trzaska, Z., The algorithm for computing nonmonic second order multivariable systems, Comput. math. appl., 24, 11, 17-27, (1992) · Zbl 0778.93104
[16] Buckel, W., Supraleitung. grundlagen und anwendungen, (1972), Physik Verlag GmbH Weinheim, (in German)
[17] ()
[18] Kusic, G.L., Computer-aided power systems analysis, (1986), Prentice-Hall Englewood Cliffs, NJ
[19] Brechna, H., Superconducting magnet systems, (1973), Springer-Verlag Berlin
[20] Renady, M.; Rogers, R.C., An introduction to partial differential equations, (1993), Springer-Verlag New York
[21] Silver, A.H.; Zimmermann, J.E., Coupled superconducting quantum oscillators, Phys. rev., 158, 2, 423-425, (1957)
[22] Simon, R.; Smith, A., Superconductors, (1988), Prentice-Hall Englewood Cliffs, NJ
[23] Singh, S.K., Impact of high temperature superconductors and pulsed power systems, IEEE trans. magn., 25, 2, 1787-1790, (1989)
[24] Chang, F.-Y., Transient analysis of lossless transmission lines in a non-homogeneous dielectric medium, IEEE trans., MIT-18, 14, 616-626, (1970)
[25] Sezgin, M., Magnetohydrodynamic flow in a rectangle duct, Int. J. num. meth. fluids, 7, 3, 697-718, (1987) · Zbl 0639.76112
[26] Wilson, M., Superconducting magnets, (1983), Oxford Univ. Press Oxford
[27] Rubner-Petersen, T., NAP2 a nonlinear analysis program for electronic circuits, (1973), Techn. Univ. Denmark Lyngby, Version 2.
[28] Tuinenga, P.W., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.