×

zbMATH — the first resource for mathematics

Borel structure in groups and their duals. (English) Zbl 0082.11201

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arlen Brown, The unitary equivalence of binormal operators, Amer. J. Math. 76 (1954), 414 – 434. · Zbl 0055.33902 · doi:10.2307/2372582 · doi.org
[2] Roger Godement, Théorie des caractères. II. Définition et propriétés générales des caractères, Ann. of Math. (2) 59 (1954), 63 – 85 (French). · Zbl 0055.02103 · doi:10.2307/1969833 · doi.org
[3] Harry Gonshor, Spectral theory for a class of nonnormal operators, Canad. J. Math. 8 (1956), 449 – 461. · Zbl 0072.33202 · doi:10.4153/CJM-1956-054-4 · doi.org
[4] Richard V. Kadison, Multiplicity theory for operator algebras, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 169 – 173. · Zbl 0084.10704
[5] Irving Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219 – 255. · Zbl 0042.34901
[6] Casimir Kuratowski, Topologie. I. Espaces Métrisables, Espaces Complets, Monografie Matematyczne, vol. 20, Warszawa-Wrocław, 1948 (French). 2d ed. · Zbl 0041.09603
[7] L. H. Loomis, Abstract harmonic analysis, New York, 1953. · Zbl 0052.11701
[8] George W. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16 (1949), 313 – 326. · Zbl 0036.07703
[9] George W. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 537 – 545. · Zbl 0035.06901
[10] George W. Mackey, On induced representations of groups, Amer. J. Math. 73 (1951), 576 – 592. · Zbl 0045.30305 · doi:10.2307/2372309 · doi.org
[11] George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101 – 139. · Zbl 0046.11601 · doi:10.2307/1969423 · doi.org
[12] George W. Mackey, Induced representations of locally compact groups. II. The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193 – 221. · Zbl 0051.01901 · doi:10.2307/1969786 · doi.org
[13] -, Les ensembles Boréliens et les extensions des groupes, submitted to J. Math. Pures Appl.
[14] John von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401 – 485. · Zbl 0034.06102 · doi:10.2307/1969463 · doi.org
[15] A. Weil, L’intégration dans les groupes topologiques et ses applications, Actualitiés Scientifiques et Industrielles, no. 869, Paris (1938).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.