×

New simple Lie algebras of prime characteristic. (English) Zbl 0082.25104


MSC:

17B50 Modular Lie (super)algebras
17B20 Simple, semisimple, reductive (super)algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. A. Albert and M. S. Frank, Simple Lie algebras of characteristic \?, Univ. e Politec. Torino. Rend. Sem. Mat. 14 (1954 – 55), 117 – 139.
[2] Marguerite Straus Frank, A new class of simple Lie algebras, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 713 – 719. · Zbl 0055.26503
[3] Nathan Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), no. 2, 206 – 224. · Zbl 0017.29203
[4] N. Jacobson, Classes of restricted Lie algebras of characteristic \?. I, Amer. J. Math. 63 (1941), 481 – 515. · doi:10.2307/2371364
[5] N. Jacobson, Classes of restricted Lie algebras of characteristic \?. II, Duke Math. J. 10 (1943), 107 – 121. · Zbl 0063.03015
[6] I. Kaplansky, Seminar on simple Lie algebras. The First Summer Mathematical Institute, Bull. Amer. Math. Soc. vol. 60 (1954) pp. 470-471.
[7] George B. Seligman, On a class of semisimple restricted Lie algebras, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 726 – 728. · Zbl 0055.26504
[8] George B. Seligman, On Lie algebras of prime characteristic, Mem. Amer. Math. Soc. No. 19 (1956), 85. · Zbl 0071.02703
[9] H. Zassenhaus, Über Lie’sche ringe mit primzahlcharakteristik, Abh. Math. Sem. Univ. Hamburg vol. 13 (1939) pp. 1-100.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.