×

Completeness and the open mapping theorem. (English) Zbl 0082.32502


PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] BANACH (STEFAN) . - Théorie des opérations linéaires , Warszawa, 1932 (Monografje Matematyczne, Tom 1). Article | Zbl 0005.20901 | JFM 58.0420.01 · Zbl 0005.20901
[2] COLLINS (HERON SHERWOOD) . - Completeness and compactness in linear topological spaces (Trans. Amer. math. Soc., t. 79, 1955 , p. 256-280). MR 16,1030a | Zbl 0064.35502 · Zbl 0064.35502
[3] GROTHENDIECK (ALEXANDRE) . - Sur la complétion du dual d’un espace vectoriel localement convexe (C. R. Acad. Sc., t. 230, 1950 , p. 605-606). Zbl 0034.37401 · Zbl 0034.37401
[4] GROTHENDIECK (ALEXANDRE) . - Sur les espaces (F) et (DF) (Summa Bras. Math., t. 3, 1954 , p. 57-123). MR 17,765b | Zbl 0058.09803 · Zbl 0058.09803
[5] KAPLAN (SAMUEL) . - Cartesian products of reals (Amer. J. Math., t. 74, 1952 , p. 936-654). MR 14,1002a | Zbl 0049.35402 · Zbl 0049.35402
[6] KÖTHE (GOTTFRIED) . - Die Quotientenräume eines linearen vollkommenen Raumes (Math. Z., t. 5, 1949 , p. 17-35). Zbl 0029.05001 · Zbl 0029.05001
[7] KREIN (M.) and SMULIAN (V.) . - On regularly convex sets in the space conjugate to a Banach space (Annals of Math., Series 2, t. 41, 1940 , p. 556-583). MR 1,335e | Zbl 0024.41305 | JFM 66.0533.02 · Zbl 0024.41305
[8] PTÁK (VLASTIMIL) . - On complete topological linear spaces (Czechoslovak Math. J., t. 3, (78), 1953 , p. 301-364). Article | MR 16,262c | Zbl 0052.33803 · Zbl 0052.33803
[9] PTÁK (VLASTIMIL) . - Compact subsets of convex topological linear spaces (Czechoslovak Math. J., t. 4, (79), 1954 , p. 51-74). Article | MR 18,55c | Zbl 0057.09401 · Zbl 0057.09401
[10] ROBERTSON (A.) and ROBERTSON (W.) . - On the closed graph theorem (Proc. Glasgow Math. Ass., t. 3, 1956 , p. 9-12). MR 18,810d | Zbl 0073.08702 · Zbl 0073.08702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.