×

zbMATH — the first resource for mathematics

Algebraic analysis of many valued logics. (English) Zbl 0084.00704

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Garrett Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25, revised edition, American Mathematical Society, New York, N. Y., 1948. · Zbl 0033.10103
[2] C. C. Chang, Proof of an axiom of Łukasiewicz, Trans. Amer. Math. Soc. 87 (1958), 55 – 56. · Zbl 0085.24402
[3] J. Łukasiewicz and A. Tarski, Untersuchungen über den Aussagenkalkül, Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, Classe III, vol. 23 (1930) pp. 30-50. · JFM 57.1319.01
[4] C. A. Meredith, The dependence of an axiom of Łukasiewicz, Trans. Amer. Math. Soc. 87 (1958), 54. · Zbl 0085.24401
[5] Alan Rose and J. Barkley Rosser, Fragments of many-valued statement calculi, Trans. Amer. Math. Soc. 87 (1958), 1 – 53. · Zbl 0085.24303
[6] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), no. 1, 37 – 111. · Zbl 0014.34002
[7] Alfred Tarski, Contributions to the theory of models. I, Nederl. Akad. Wetensch. Proc. Ser. A. 57 (1954), 572 – 581 = Indagationes Math. 16, 572 – 581 (1954). · Zbl 0058.24702
[8] M. Wajsberg, Beiträge zum Metaaussagenkalkül I, Monatsh. Math. Phys. 42 (1935), no. 1, 221 – 242 (German). · JFM 61.0972.01 · doi:10.1007/BF01733295 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.