×

Estimation de l’erreur due à l’arrondissement dans les processus itératifs linéaires, en particulier dans le procédé de Seidel pour la solution du problème de Dirichlet dans le carré 10\( \times\)10. (Czech. Russian, French summaries) Zbl 0084.11403

References:

[1] Абрамов: О влиянии ошибок округления при решении уравнения Дапласса. Вычислительная математика и вычислительная техника. Сб. 1 АН СССР, Москва 1953. · Zbl 1151.94459
[2] Ch. Blanc W. Liniger: Erreurs de chute dans la résolution de systèmes algébriques linéaires. Com. Math. Helvetici 30, Fasc. 4. 257-264. · Zbl 0073.33701
[3] Václav Fabian: Zufälliges Abrunden und die Konvergenz des linearen (Seidelschen) Iterationverfahrens. Mathematische Nachrichten. · Zbl 0078.30101
[4] Václav Fabian: L’influence d’arrondissement aux évaluations numériques linéaires. Czech. Math. J. 8 (83), 1958, No 2. · Zbl 0083.35102
[5] G. E. Forsythe: Note on rounding-off errors. Nat. Bur. Stand. Los Angeles, Calif., 3 pp. (1950). · Zbl 0168.14002
[6] J. Francl: A propos des tables de logarithme. Vierteljahrschrift der Naturforschenden Gesellschaft in Zürich (1917), 62, s. 286.
[7] Harry D. Huskey: On the Precision of a certain Procedure of Numerical Integration. J. Research Nat. Bur. Stand. 42 (1949), 57-62.
[8] M. G. Kendall: The Advanced Theory of Statistics. London 1945.
[9] J. von Neumann H. H. Goldstine: Numerical Inverting of Matrices of High Order. Bull. Amer. Math. Soc. 53, No 11 (1947), 1021-1099. · Zbl 0031.31402
[10] Journal of the American Statistical Association, 48 (1953), str. 107 a další. · Zbl 1151.94459
[11] M. G. Kendall B. Babington Smith: Tables of Random Sampling Numbers. Tracts for computers, No 24, 1940. · Zbl 0024.42902
[12] L. H. C. Tipett: Random Sampling Numbers. Tracts for computers, No 15, 1927.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.