×

zbMATH — the first resource for mathematics

Extended Lagrangian particle-in-cell (ELPIC) code for inhomogeneous compressible flows. (English) Zbl 0840.76052
ELPIC, a macroparticle code for modeling complex nonstationary inhomogeneous compressible flows, is described and demonstrated. It operates with Lagrangian-type finite-sized rectangular particles with adjustable sizes. The particles carry mass, which is constant between divisions, and a number of chemical and thermodynamical properties of the substance they represent, including the index of the equation of state, chemical composition, mechanical properties, etc. The ELPIC approach combines the essential advantages of both Eulerian and Lagrangian approaches, and overcomes the difficulties encountered by Nishiguchi and Yabe in their well-known code SOAP, based on conceptually similar principles.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Software:
SALE-3D; TRIPIC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amsden, A. (1966). The Particle-in-Cell method for the calculation of the dynamics of compressible fluids.Los Alamos Scientific Laboratory Report LA-3466.
[2] Amsden, A.A., Ruppel, H. M., and Hirt, C. W. (1980). SALE: A Simplified ALE Program for Fluid Flow at All Speeds. Los-Alamos Report LA-8095, pp. 33–36.
[3] Barnes, D C., Kamimura, T., Leboeuf, J.-N., and Tajima, T. (1983). Implicit Particle Simulation of Magnetized Plasmas.Journal of Computational Physics 52, 480–502. · Zbl 0529.76117 · doi:10.1016/0021-9991(83)90004-9
[4] Book, D. L., Boris, J. P., and Nain, K. (1975). Flux-Corrected Transport-II: generalization of the method.Journal of Computational Physics 18, 248–283. · Zbl 0306.76004 · doi:10.1016/0021-9991(75)90002-9
[5] Brackbill, J. U. (1991). FLIP MHD: A particle-in-Cell method for magnetohydrodynamics.Journal of Computational Physics 96, 163–192. · Zbl 0726.76078 · doi:10.1016/0021-9991(91)90270-U
[6] Brackbill, J U. (1988). The ringing instability in Particle-in-Cell calculations of low-speed flow.Journal of Computational Physics 75, 469–492. · Zbl 0638.76068 · doi:10.1016/0021-9991(88)90123-4
[7] Brackbill, J U., and Ruppel, H. M. (1986). FLIP: a method for adaptively-zoned, Particle-in-Cell calculation of fluid flows in two dimensions.Journal of Computational Physics 65, 314–343. · Zbl 0592.76090 · doi:10.1016/0021-9991(86)90211-1
[8] Brunel, F., Leboeuf, J. N., Tajima, T., Dawson, J. M., Makino, M., and Kamimura, Y. (1981). Magnetohydrodynamic particle code: Lax-Wendroff algorithm with finer grid interpolations.Journal of Computational Physics 43, 268–288. · Zbl 0472.76117 · doi:10.1016/0021-9991(81)90123-6
[9] Evans, M. W., and Harlow, F. H. (1957). The Particle-in-Cell method for hydrodynamic calculations. Los Alamos Scientific Laboratory Report LA-2139.
[10] Haas, J.-F., and Sturtevant, B. (1987). Interaction of weak shock waves cylindrical and spherical gas inhomogeneities.Journal of Fluid Mechanics 181, 41–76. · doi:10.1017/S0022112087002003
[11] Harlow, F. H., Dickman, D. O., Harris, D. E., and Martin, R. E. (1959). Two-dimensional hydrodynamic calculations. Los Alamos Scientific Laboratory Report, LA-2301.
[12] Marder, B. M. (1975). GAP-a PIC-type Fluid Code,Mathematics of Computation 29, (130), 434–446. · Zbl 0307.76001
[13] Matsumoto, M., and Kawata, S. (1990). TRIPIC: Triangular-Mesh Particle-in-Cell Code.Journal of Computational Physics 87, 488–493. · Zbl 0709.65102 · doi:10.1016/0021-9991(90)90262-Y
[14] Nishiguchi, A., and Yabe, T. (1982). Finite-sized fluid particle in a nonuniform moving grid.Journal of Computational Physics 47, 297–302. · Zbl 0493.76067 · doi:10.1016/0021-9991(82)90081-X
[15] Nishiguchi, A., and Yabe, T. (1983). Second-Order Fluid Particle Scheme.Journal of Computational Physics 52, 390–413. · Zbl 0517.76016 · doi:10.1016/0021-9991(83)90037-2
[16] Nishiguchi, A., Orii, S., and Yabe, T. (1985). Vector Calculation of Particle Code.Journal of Computational Physics 61, 519–522. · Zbl 0581.65028 · doi:10.1016/0021-9991(85)90078-6
[17] Picone, J. M., and Boris, J. P. (1988). Vorticity generation by shock propagation through bubbles in a gas.Journal of Fluid Mechanics 189, 23–52. · doi:10.1017/S0022112088000904
[18] Takewaki, H., Nishiguchi, A., and Yabe, T. (1985). Cubic Interpolated Pseudo-particle Method (CIP) for solving Hyperbolic-Type Equations.Journal of Computational Physics 61, 261–268. · Zbl 0607.65055 · doi:10.1016/0021-9991(85)90085-3
[19] Viechinski, D. J., Slavin, M. J., and Kliman, M. (1991).American Ceramic Society Bulletin 70, 1035–1039.
[20] von Neumann, J., and Richtmyer, R. D. (1950).Journal of Applied Physics 21, 232. · Zbl 0037.12002 · doi:10.1063/1.1699639
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.