×

zbMATH — the first resource for mathematics

Ideals and congruence relations in lattices. (English) Zbl 0085.02002

MSC:
06B10 Lattice ideals, congruence relations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Г. Я. Арешкин, Об отношениях конгруенции в дистрибутивных структурах с нулевым элементом, ДАН СССР,90 (1953), pp. 485–486. · JFM 29.0452.02
[2] G. Birkhoff,Lattice theory (New York, 1948). · Zbl 0033.10103
[3] R. P. Dilworth, The structure of relatively complemented lattices,Annals of Math.,51 (1950), pp. 348–359. · Zbl 0036.01802 · doi:10.2307/1969328
[4] R. P. Dilworth andM. Hall, The imbedding problem for modular lattices,Annals of Math.,45 (1944), pp. 450–456. · Zbl 0060.06102 · doi:10.2307/1969187
[5] N. Funayama andT. Nakayama, On the distributivity of a lattice of lattice-congruences,Proc. Imp. Acad. Tokyo,18 (1942), pp. 553–554. · Zbl 0063.01483 · doi:10.3792/pia/1195573786
[6] G. Grätzer andE. T. Schmidt, Hálók ideáljai és kongruenciarelációi. I,MTA Mat. és Fiz. Oszt. Közl.,7 (1957), pp. 93–108.
[7] G. Grätzer andE. T. Schmidt, Hálók ideáljai és kongruenciarelációi. II,MTA Mat. és Fiz. Oszt. Közl.,7 (1957), pp. 417–434.
[8] G. Grätzer andE. T. Schmidt, Hálók ideáljai és kongruenciarelációi. III,MTA Mat. és Fiz. Oszt. Közl.,8 (1958) (under press).
[9] G. Grätzer andE. T. Schmidt, On ideal theory for lattices,Acta Sci. Math. Szeged,19 (1958), pp. 82–92. · Zbl 0092.26802
[10] G. Grätzer andE. T. Schmidt, On the Jordan–Dedekind chain condition,Acta Sci. Math. Szeged,18 (1957), pp. 52–56. · Zbl 0079.04501
[11] G. Grätzer andE. T. Schmidt, Characterizations of relatively complemented distributive lattices,Publ. Math. Debrecen,5 (1958), pp. 275–287. · Zbl 0080.25402
[12] G. Grätzer andE. T. Schmidt, Two notes on lattice congruences,Annales Univ. Sci. Budapestiensis de Rolando Eötvös nominatae, Sectio Math.,1 (1958) (under press). · Zbl 0089.25603
[13] J. Hashimoto, Direct, subdirect decompositions and congruence relations,Osaka Math. Journal,9 (1957), pp. 87–112. · Zbl 0078.01805
[14] J. Hashimoto, Ideal theory for lattices,Math. Japonicae,2 (1952), pp. 149–186. · Zbl 0048.25903
[15] J. Jakubik, Relàcie kongruentnosti a slabá projektivnosť vo sväzoch,Časopis Pěst. Mat.,80 (1955), pp. 206–216.
[16] M. Kolibiar, O kongruenciách na distributivnych sväzoch,Acta Facultatis Rev. Nat. Univ. Comenianae, Math.,1 (1956), pp. 247–253.
[17] O. Ore, Theory of equivalence relations,Duke Math. Journal,9 (1942), pp. 573–627. · Zbl 0060.06201 · doi:10.1215/S0012-7094-42-00942-6
[18] T. Tanaka, Canonical subdirect factorizations of lattices,J. Sci. Hiroshima Univ., Ser. A,16 (1952), pp. 239–246. · Zbl 0049.01704
[19] H. Wallman, Lattices and topological spaces,Annals of Math.,39 (1938), pp. 112–126. · Zbl 0018.33202 · doi:10.2307/1968717
[20] Shih-chiang Wang, Notes on the permutability of congruence relations,Acta Math. Sinica,3 (1953), pp. 133–141. · Zbl 0099.26101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.