×

zbMATH — the first resource for mathematics

Integration theorems for gages and duality for uni-modular groups. (English) Zbl 0085.10202

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Banach, Théoríe des opérations linéaires, Warsaw, 1932. · JFM 58.0420.01
[2] Henri Cartan and Roger Godement, Théorie de la dualité et analyse harmonique dans les groupes abéliens localement compacts, Ann. Sci. École Norm. Sup. (3) 64 (1947), 79 – 99 (French). · Zbl 0033.18801
[3] J. Dixmier, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France 81 (1953), 9 – 39 (French). · Zbl 0050.11501
[4] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. · Zbl 0040.16802
[5] P. Jordan and J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719 – 723. · JFM 61.0435.05
[6] Irving Kaplansky, A theorem on rings of operators, Pacific J. Math. 1 (1951), 227 – 232. · Zbl 0043.11502
[7] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. · Zbl 0052.11701
[8] F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716 – 808. · Zbl 0060.26903
[9] I. E. Segal, An extension of Plancherel’s formula to separable unimodular groups, Ann. of Math. (2) 52 (1950), 272 – 292. · Zbl 0045.38502
[10] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401 – 457. · Zbl 0051.34201
[11] I. E. Segal, Abstract probability spaces and a theorem of Kolmogoroff, Amer. J. Math. 76 (1954), 721 – 732. · Zbl 0056.12301
[12] S. Tannaka, Dualität der nicht-kommutativen Gruppen, Tôhoku Math. J. vol. 53 (1938) pp. 1-12. · Zbl 0020.00904
[13] J. v. Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann. 102 (1930), no. 1, 370 – 427 (German). · JFM 55.0825.02
[14] A. C. Zaanen, Linear analysis, New York, Interscience, 1953. · Zbl 0053.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.