Demers, Maurice R.; Federer, Herbert On Lebesgue area. II. (English) Zbl 0086.04801 Trans. Am. Math. Soc. 90, 499-522 (1959). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 Documents Keywords:differentiation and integration, measure theory PDF BibTeX XML Cite \textit{M. R. Demers} and \textit{H. Federer}, Trans. Am. Math. Soc. 90, 499--522 (1959; Zbl 0086.04801) Full Text: DOI OpenURL References: [1] Lamberto Cesari, Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue, Ann. Scuola Norm. Super. Pisa (2) 11 (1942), 1 – 42 (Italian). · Zbl 0027.20604 [2] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. · Zbl 0047.41402 [3] Herbert Federer, Measure and area, Bull. Amer. Math. Soc. 58 (1952), 306 – 378. · Zbl 0046.28402 [4] Herbert Federer, On Lebesgue area, Ann. of Math. (2) 61 (1955), 289 – 353. · Zbl 0065.04002 [5] Herbert Federer, An addition theorem for Lebesgue area, Proc. Amer. Math. Soc. 6 (1955), 911 – 914. · Zbl 0067.28301 [6] C. Kuratowski, Topologie, 3d ed. Monografie Matematyczne vol. 20 (1952) and vol. 21 (1950), Warsaw. · JFM 59.0563.02 [7] Paul Slepian, Theory of Lebesgue area of continuous maps of 2-manifolds into \?-space, Ann. of Math. (2) 68 (1958), 669 – 689. · Zbl 0083.28203 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.