zbMATH — the first resource for mathematics

On the stability of viscous fluid motions. (English) Zbl 0086.20001

fluid mechanics
Full Text: DOI
[1] Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc. London (A) 186, 123-164 (1895); Scientific Papers II, pp. 535-577. · JFM 26.0872.02
[2] Orr, W. McF.: The stability or instability of the steady motions of a liquid. Part II: A viscous liquid. Proc. Roy. Irish Acad. (A) 27, 69-138 (1907). · JFM 38.0741.02
[3] Hamel, G.: Zum Turbulenzproblem. Nachr. Ges. Wiss. G?ttingen. 1911, 261-270. · JFM 42.0792.01
[4] Lord Rayleigh: On the motion of a viscous fluid. Phil. Mag. (6) 26, 776-786 (1913); Papers VI, pp. 187-197. · JFM 44.0843.01
[5] K?rm?n, Th. von: ?ber die Stabilit?t der Laminarstr?mung und die Theorie der Turbulenz. Proc. 1st. Int. Congress Appl. Mech. Delft, 1924, pp. 97-112.
[6] Synge, J. L.: Hydrodynamical stability. Semi-centennial publications of the Amer. Math. Soc. 2, 227-269 (1938). Especially Part III.
[7] Thomas, T. Y.: On the stability of viscous fluids. (1941). Univ. Calif. Publ. Math. New Series 2, 13-43 (1944).
[8] Thomas, T. Y.: On the uniform convergence of the solutions of the Navier-Stokes equations. Proc. Nat. Acad. Sci. U.S.A. 29, 243-246 (1943). · Zbl 0061.43808
[9] Hopf, E.: On non-linear partial differential equations. Lecture series of the Symposium on partial differential equations. Univ. of Calif. 1955, PP. 7-11.
[10] Leray, J.: Essai sur les mouvements plan d’un liquide visqueux que limitent des parois. J. Math. Pures. Appl. (9) 13, 331-418 (1934). · JFM 60.0727.01
[11] Kamp? de F?riet, J.: Sur la decroissance de l’?nergie cin?tique d’un fluide visqueux incompressible occupant un domaine born? ayant pour fronti?re des parois solides fixes. Ann. Soc. Sci. Bruxelles 63, 35-46 (1949).
[12] Berker, R.: In?galit? v?rifi?e par l’?nergie cin?tique d’un fluide visqueux incompressible occupant un domaine spatial born?. Bull. Tech. Univ. Istanbul 2, 41-50 (1949). · Zbl 0036.25801
[13] Synge, J. L.: On the stability of a viscous liquid between two rotating coaxial cylinders. Proc. Roy. Soc. London (A) 167, 250-256 (1938). · JFM 64.1449.05
[14] Lin, C. C.: The theory of hydrodynamic stability. Cambridge 1955. Especially Chaps. 1, 2, 4.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.