×

zbMATH — the first resource for mathematics

Some subreflexive Banach spaces. (English) Zbl 0087.10704

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. M.Day, Normed linear Spaces. Berlin 1958. · Zbl 0082.10603
[2] M. M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces. Bull. Amer. Math. Soc.47, 313-317 (1941). · JFM 67.0402.04
[3] P. R.Halmos, Measure Theory. New York 1950.
[4] S. Kakutani, Concrete representation of abstract(L)-spaces and the mean ergodic theorem. Ann. of Math., II. Ser.42, 523-537 (1941). · Zbl 0027.11102
[5] S. Kakutani, Concrete representation of abstract (M)-spaces. Ann. of Math., II. Ser.42, 994-1024 (1941). · Zbl 0060.26604
[6] L. H.Loomis, An Introduction to Abstract Harmonic Analysis. New York 1953. · Zbl 0052.11701
[7] R. R. Phelps, Subreflexive normed linear spaces. Arch. Math.8, 444-450 (1958). · Zbl 0081.32701
[8] W. W. Rogosinski, Continuous linear functionals on subspaces ofL p andC. Proc. Lond. Math. Soc, III. Ser.6, 175-190 (1956). · Zbl 0070.33702
[9] J. Schwartz, A note on the space L p * . Proc. Amer. Math. Soc.2, 270-275 (1951). · Zbl 0043.11902
[10] A. C.Zaanen, Linear Analysis. Amsterdam 1956.
[11] S. I. Zuhovickii, On minimal extensions of linear functionals on continuous function spaces. Izvestija Akad. Nauk SSSR, Ser. Mat.21, 409-422 (1957) (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.