×

zbMATH — the first resource for mathematics

Numerical analysis of aerodynamic performance of rotors with leading edge slats. (English) Zbl 0850.76376
MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Software:
TURNS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bangalore, A. 1995: Computational Fluid Dynamic Studies of High Lift Rotor Systems Using Distributed Computing. Ph.D. Thesis, Georgia Institute of Technology. Atlanta. GA
[2] Bangalore, A.; Tseng, W.; Sankar, L. N. 1994: A Multizone Navier-Stokes Analysis of Dynamic Lift Enhancement Concepts. AIAA paper 94-0164
[3] Bangalore, A.; Phaengsook, N.; Sankar, L. N. 1994: Application of a Third Order Upwind Scheme to Viscous Flow Over Clean and Iced Wings. AIAA paper 94-0485
[4] Baldwin, B. S.; Lomax, H. 1978: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow. AIAA Paper 78-0257
[5] Beam, R.; Warming, R. F. 1976: An Implicit Finite Difference Algorithm for Hyperbolic Systems in Conservation LawForm. Journal of Computational Physics. 22 · Zbl 0336.76021
[6] Caradonna F. X.; Tung C. 1981: Experimental and Analytical Studies of a Model Helicopter Rotor in Hover. Vertica. 5: 149-161
[7] Dadone, L. 1976: Helicopter Design DATCOM, Vol I-Airfoils. NASA CR-153247
[8] Hariharan, N.; Sankar, L. N. 1994: Higher Order Simulation Numerical Simulation of Rotor Flowfield.50th American Helicopter Society Forum
[9] Lorber, P. F.; Stauter, R. C.; Landgrebe, A. J. 1989: A Comprehensive Hover Test of the Airloads and Airflow ofaExtensively Instrumented Model Helicopter Rotor. 45th Annual AHS Forum
[10] McAlister, K. W.; Pucci, S. L.; McCroskey, W. J.; Carr, L. W. 1982: An Experimental study of Dynamic Stall on Advanced Airfoil Sections, Volume 2: Pressure and Force Data. NASA TM 84245
[11] Noonan, K. W.; Bingham, B. J. 1980: Aerodynamic Characteristics of Three Helicopter Rotor Airfoil Sections from Model Scale to Full Scale at Mach Numbers from 0.35 to 0.9 NASA Technical Paper 1701. AVRADCOM TR-80-B-5
[12] Noonan, K. W.; Allison, D. O.; Stanaway, S. 1994: Investigation of Slotted Rotorcraft Airfoil at Mach Numbers Ranging from 0.2 to 0.88 at Full Scale Reynolds Numbers. AHS Aeromechanics Specialists Conference
[13] Roe P. L. 1981: Approximate Reimann Solvers, Parameter Vectors and Difference Schemes. Journal of Computational Physics. 43: 357-372 · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[14] Sankar, L. N.; Phaengsook, N.; Bangalore, A. 1993: Effects of Icing on the Aerodynamic Performance of High Lift Airfoils. AIAA paper 93-0026
[15] Srinivasan G. R. McCroskey W. J. 1988: Navier-Stokes Calculations of Hovering Rotor Flowfields. Journal of Aircraft. 25: 865-874 · doi:10.2514/3.45673
[16] Srinivasan, G. R.; Baeder, J. D.; Obayashi, S.; McCroskey, W. J. 1992: Flowfield of a Lifting Rotor in Hover: A Navier-Stokes Simulation. AIAA Journal. 30 · Zbl 0760.76065
[17] Srinivasan, G. R.; Baeder, J. D. 1993: TURNS: A Free Wake Euler/Navier-Stokes Numerical Method for Helicopter Rotors. AIAA Journal. 31
[18] Strawn, R. J.; Barth, J. T. 1992: A Finite-Volume Euler Solver for Computing Rotary-Wing Aerodynamics on Unstructured Meshes. 48th Annual forum of the American Helicopter Society
[19] Tuncer, I.; Sankar, L. N. 1992: Unsteady Aerodynamic Characteristics of a Dual Element Airfoil Configuration. AIAA Paper 92-2508
[20] Tung C.; McAlister K. W.; Wang C. M. 1993: Unsteady Aerodynamic Behavior of an Airfoil with and without a Slat. Computers in Fluids. 22: 529-547 · doi:10.1016/0045-7930(93)90024-4
[21] Wake, B. E.; Sankar, L. N. 1989: Solution of Navier-Stokes Equations for the Flow over a Rotor Blade. Journal of the American Helicopter Society
[22] Yu, Y.; Lee, S.; McAlister, K. W.; Tung, C. 1993: High Lift Concepts for Rotorcraft Applications. 49th American Helicopter Society Annual Forum
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.