Huber, Heinz Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. (German) Zbl 0089.06101 Math. Ann. 138, 1-26 (1959). Reviewer: F. van der Blij (Utrecht) Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 ReviewsCited in 83 Documents MSC: 30F35 Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization) Keywords:homotopy classes; closed paths; closed analytic Riemann surface; hyperbolic space forms; motion groups; automorphic function; functional equation; Laplace-Beltrami differential operator × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Bohr, H.: Zur Theorie der fast periodischen Funktionen. I. Acta math.45, 29-127 (1925). · JFM 50.0196.01 · doi:10.1007/BF02395468 [2] Doetsch, G.: Handbuch der Laplace-Transformation. I. Basel: Birkhäuser 1950. · Zbl 0040.05901 [3] Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Leipzig und Berlin: B. G. Teubner 1912. · JFM 43.0423.01 [4] Huber, H.: Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. Comment. Math. Helv.30, 20-62 (1956). · Zbl 0065.31603 · doi:10.1007/BF02564331 [5] Magnus, W., u.F. Oberhettinger: Formeln und Sätze ... Berlin: Springer 1943. [6] Minakshisundaram, S., andA. Pleijel: Some properties of the eigenfunctions of the Laplace-Operator on Riemannian Manifolds. Canad. J. Math.1, 242-256 (1949). · Zbl 0041.42701 · doi:10.4153/CJM-1949-021-5 [7] Seifert, H., u.W. Threlfall: Lehrbuch der Topologie. Leipzig: B. G. Teubner 1934. · JFM 60.0496.05 [8] Weyl, H.: Die Idee der Riemannschen Fläche. 3. Aufl. Stuttgart: B. G. Teubner 1955. · Zbl 0068.06001 [9] Wiener, N.: Tauberian Theorems. Ann. of Math.33, 1-100 (1932). · JFM 58.0226.02 · doi:10.2307/1968102 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.