×

A new definition of the integral for non-parametric problems in the calculus of variations. (English) Zbl 0089.08601


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] L. Cesari,Surface Area. Ann. of Math. Studies No. 35, Princeton University Press, 1955. Especially pp. 21–24 and Appendix B.
[2] –, Sulle funzioni a variazione limitata.Ann. Scuola Norm. Sup. Pisa (2), 5 (1936), 299–313. · Zbl 0014.29605
[3] S. Cinquini, Condizioni sufficienti per la semicontinuitá nel calcolo delle variazioni.Ann. Scuola Norm. Sup. Pisa (2), 2 (1933), 41–58. · JFM 59.0503.02
[4] C. Goffman, Lower semi-continuity and area functionals.Rend. Circ. Mat. Palermo (2), 2 (1953), 203–235. · Zbl 0052.28601
[5] T. Radó,Length and Area. Amer. Math. Soc. Coll. Publ., 30, 1946. Especially chapter V. 2.
[6] J. Serrin, On a fundamental theorem of the calculus of variations. Preceding inthis Journal, 1–22. · Zbl 0089.08502
[7] L. Tonelli,Fondamenti di calcolo delle variazione. Bologna, 1922. Especially vol. I, 385–392.
[8] –, Sur la semi-continuité des intégrales doubles du calcul des variations.Acta Math., 53 (1929), 325–346. · JFM 55.0899.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.