Kaplan, E. L.; Meier, Paul Nonparametric estimation from incomplete observations. (English) Zbl 0089.14801 J. Am. Stat. Assoc. 53, 457-481 (1958). Let \(P(t)\) be the probability that an item from a given population will have lifetime exceeding \(t\). For a sample of size \(N\) let the observed times either to death or to other loss be \(t_1\leq t_2\leq t_3\leq \cdots\leq t_n\). The maximum likelihood estimate of \(P(t)\) is then \[ \widehat{P(t)}=\prod_r \frac{(N-r)}{(N-r+1)} \] where \(r\) ranges over those integers for which \(t_r\leq t\) and \(t_r\) is a time to death. The mean and variance of \(\widehat{P(t)}\) are computed. Comparisons of this estimate are made with reduced sample estimates and actuarial estimates. Reviewer: D. R. Whitney Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 28 ReviewsCited in 958 Documents MSC: 62G05 Nonparametric estimation 62G08 Nonparametric regression and quantile regression Keywords:statistics PDF BibTeX XML Cite \textit{E. L. Kaplan} and \textit{P. Meier}, J. Am. Stat. Assoc. 53, 457--481 (1958; Zbl 0089.14801) Full Text: DOI OpenURL